Experimental Research and Improved Neural Network Optimization Based on the Ocean Thermal Energy Conversion Experimental Platform
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Xuanang & Wang, Xuan & Cai, Jinwen & He, Zhaoxian & Tian, Hua & Shu, Gequn & Shi, Lingfeng, 2022. "Experimental study on operating parameters matching characteristic of the organic Rankine cycle for engine waste heat recovery," Energy, Elsevier, vol. 244(PA).
- Chen, Fengyun & Liu, Lei & Peng, Jingping & Ge, Yunzheng & Wu, Haoyu & Liu, Weimin, 2019. "Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode," Energy, Elsevier, vol. 183(C), pages 497-503.
- Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
- Palagi, Laura & Sciubba, Enrico & Tocci, Lorenzo, 2019. "A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications," Applied Energy, Elsevier, vol. 237(C), pages 210-226.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
- Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Xing, Chengda & Yan, Yinlian & Yang, Anren & Wang, Yan, 2023. "Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment," Applied Energy, Elsevier, vol. 348(C).
- Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2024. "Model-based optimisation of solar-assisted ORC-based power unit for domestic micro-cogeneration," Energy, Elsevier, vol. 308(C).
- Li, Tailu & Qiao, Yuwen & Wang, Zeyu & Zhang, Yao & Gao, Xiang & Yuan, Ye, 2024. "Experimental study on dynamic power generation of three ORC-based cycle configurations under different heat source/sink conditions," Renewable Energy, Elsevier, vol. 227(C).
- Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
- Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
- Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
- Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
- Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
- Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
- Tsai, Yu-Chun & Feng, Yong-Qiang & Shuai, Yong & Lai, Jhao-Hong & Leung, Michael K.H. & Wei, Yen & Hsu, Hua-Yi & Hung, Tzu-Chen, 2023. "Experimental validation of a 0.3 kW ORC for the future purposes in the study of low-grade thermal to power conversion," Energy, Elsevier, vol. 285(C).
- Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
- Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
- Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
- Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yao, Baofeng & Wang, Yan, 2022. "An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)," Energy, Elsevier, vol. 254(PB).
- Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
- Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
More about this item
Keywords
GA-BP-OTEC model; ocean thermal energy conversion (OTEC); OTEC experimental platform; pareto-optimal solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4310-:d:1466111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.