IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4213-d1462515.html
   My bibliography  Save this article

Gradient Boosting Regression Tree Optimized with Slime Mould Algorithm to Predict the Higher Heating Value of Municipal Solid Waste

Author

Listed:
  • Esraa Q. Shehab

    (Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah 32001, Iraq)

  • Farah Faaq Taha

    (Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah 32001, Iraq)

  • Sabih Hashim Muhodir

    (Department of Architectural Engineering, Cihan University Erbil, Erbil 44001, Iraq)

  • Hamza Imran

    (Department of Construction and Project, Al-Karkh University of Science, Baghdad 10081, Iraq)

  • Krzysztof Adam Ostrowski

    (Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland)

  • Marcin Piechaczek

    (Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland)

Abstract

The production of municipal solid waste (MSW) has led to an unprecedented level of environmental pollution, worsening the global challenges posed by climate change. Researchers and policymakers have recently made significant strides in the field of sustainable and renewable energy sources, which are viable from technological, environmental, and economic perspectives. Consequently, the waste-to-energy programs enhance nations’ socioeconomic status while positively impacting the environment. To predict the higher heating value (HHV) of MSW fuel based on carbon, hydrogen, oxygen, nitrogen, and sulfur content, the current study introduces a Gradient Boosting Regression Tree (GBRT) model optimized with the Slime Mold Algorithm (SMA). This model was evaluated using an additional 50 data points after being trained with 202 MSW biomass data points. The performance of the model was assessed using three metrics: root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R 2 ). The results indicated that our model outperformed previously developed models in terms of accuracy and reliability. Additionally, a graphical user interface (GUI) was developed to facilitate the practical application of the model, allowing users to easily input data and receive predictions on the enthalpy of the combustion of MSW fuel.

Suggested Citation

  • Esraa Q. Shehab & Farah Faaq Taha & Sabih Hashim Muhodir & Hamza Imran & Krzysztof Adam Ostrowski & Marcin Piechaczek, 2024. "Gradient Boosting Regression Tree Optimized with Slime Mould Algorithm to Predict the Higher Heating Value of Municipal Solid Waste," Energies, MDPI, vol. 17(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4213-:d:1462515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Romero Morales, Dolores, 2020. "Sparsity in optimal randomized classification trees," European Journal of Operational Research, Elsevier, vol. 284(1), pages 255-272.
    2. Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
    3. Nishu, & Tang, Songbiao & Mei, Wenjie & Yang, Juntao & Wang, Zhongming & Yang, Gaixiu, 2024. "Effect of anaerobic digestion pretreatment on pyrolysis of distillers’ grain: Product distribution, kinetics and thermodynamics analysis," Renewable Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    2. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    3. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    4. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    5. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    6. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    7. Anna Matveeva & Aleksey Bychkov, 2022. "How to Train an Artificial Neural Network to Predict Higher Heating Values of Biofuel," Energies, MDPI, vol. 15(19), pages 1-13, September.
    8. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    9. Thakur, Disha & Kumar, Sanjay & Kumar, Vineet & Kaur, Tarlochan, 2024. "Estimation of calorific value using an artificial neural network based on stochastic ultimate analysis," Renewable Energy, Elsevier, vol. 228(C).
    10. Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
    11. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    12. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    13. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    14. Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.
    15. Navarro-García, Manuel & Guerrero, Vanesa & Durban, María, 2023. "On constrained smoothing and out-of-range prediction using P-splines: A conic optimization approach," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    16. Büyükkanber, Kaan & Haykiri-Acma, Hanzade & Yaman, Serdar, 2023. "Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range," Energy, Elsevier, vol. 277(C).
    17. Inioluwa Christianah Afolabi & Emmanuel I. Epelle & Burcu Gunes & Fatih Güleç & Jude A. Okolie, 2022. "Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    18. Chen, Zhiwen & Zhao, Ming & Lv, Yi & Wang, Iwei & Tariq, Ghulam & Zhao, Sheng & Ahmed, Shakil & Dong, Weiguo & Ji, Guozhao, 2024. "Higher heating value prediction of high ash gasification-residues: Comparison of white, grey, and black box models," Energy, Elsevier, vol. 288(C).
    19. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    20. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4213-:d:1462515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.