IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v4y2022i4p75-1241d980644.html
   My bibliography  Save this article

Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes

Author

Listed:
  • Inioluwa Christianah Afolabi

    (Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso P.M.B. 4000, Nigeria)

  • Emmanuel I. Epelle

    (School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK)

  • Burcu Gunes

    (School of Biotechnology and DCU Water Institute, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland)

  • Fatih Güleç

    (Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Jude A. Okolie

    (St. Peter’s College Muenster, Box 40, Muenster, SK S0K 2Y0, Canada
    Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA)

Abstract

Higher heating values (HHV) is a very useful parameter for assessing the design and large-scale operation of biomass-driven energy systems. HHV is conventionally measured experimentally with an adiabatic oxygen bomb calorimeter. This procedure is often time-consuming and expensive. Furthermore, limited access to the required facilities is the main bottleneck for researchers. Empirical linear and nonlinear models have initially been proposed to address these concerns. However, most of the models showed discrepancies with experimental results. Data-driven machine learning (ML) methods have also been adopted for HHV predictions due to their suitability for nonlinear problems. However, most ML correlations are based on proximate or ultimate analysis. In addition, the models are only applicable to either the originator biomass or one specific type. To address these shortcomings, a total of 227 biomass datasets based on four classes of biomass, including agricultural residue, industrial waste, energy crop, and woody biomass, were employed to develop and verify three different ML models, namely artificial neural network (ANN), decision tree (DT) and random forest (RF). The model incorporates proximate and ultimate analysis data and biomass as input features. RF model is identified as the most reliable because of its lowest mean absolute error (MAE) of 1.01 and mean squared error (MSE) of 1.87. The study findings can be used to predict HHV accurately without performing experiments.

Suggested Citation

  • Inioluwa Christianah Afolabi & Emmanuel I. Epelle & Burcu Gunes & Fatih Güleç & Jude A. Okolie, 2022. "Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
  • Handle: RePEc:gam:jcltec:v:4:y:2022:i:4:p:75-1241:d:980644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/4/4/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/4/4/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gawusu, Sidique, 2024. "Evolving energy landscapes: A computational analysis of the determinants of energy poverty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    2. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    3. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    4. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    5. Anna Matveeva & Aleksey Bychkov, 2022. "How to Train an Artificial Neural Network to Predict Higher Heating Values of Biofuel," Energies, MDPI, vol. 15(19), pages 1-13, September.
    6. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    7. Thakur, Disha & Kumar, Sanjay & Kumar, Vineet & Kaur, Tarlochan, 2024. "Estimation of calorific value using an artificial neural network based on stochastic ultimate analysis," Renewable Energy, Elsevier, vol. 228(C).
    8. Esraa Q. Shehab & Farah Faaq Taha & Sabih Hashim Muhodir & Hamza Imran & Krzysztof Adam Ostrowski & Marcin Piechaczek, 2024. "Gradient Boosting Regression Tree Optimized with Slime Mould Algorithm to Predict the Higher Heating Value of Municipal Solid Waste," Energies, MDPI, vol. 17(17), pages 1-19, August.
    9. Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
    10. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    11. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    12. Büyükkanber, Kaan & Haykiri-Acma, Hanzade & Yaman, Serdar, 2023. "Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range," Energy, Elsevier, vol. 277(C).
    13. Chen, Zhiwen & Zhao, Ming & Lv, Yi & Wang, Iwei & Tariq, Ghulam & Zhao, Sheng & Ahmed, Shakil & Dong, Weiguo & Ji, Guozhao, 2024. "Higher heating value prediction of high ash gasification-residues: Comparison of white, grey, and black box models," Energy, Elsevier, vol. 288(C).
    14. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    15. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.
    16. Yang, Ke & Wu, Kai & Zhang, Huiyan, 2022. "Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:4:y:2022:i:4:p:75-1241:d:980644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.