IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4175-d1461238.html
   My bibliography  Save this article

Experimental Investigation of Physicochemical Properties of the Produced Biodiesel from Waste Frying Oil and Its Blend with Diesel Fuel

Author

Listed:
  • Grzegorz Wcisło

    (Department of Bioprocess Engineering, Energy and Automation, Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, 31-120 Krakow, Poland)

  • Agnieszka Leśniak

    (Department of General Chemistry, Institute of Quality and Product Management Sciences, Cracow University of Economics, 31-510 Krakow, Poland)

  • Dariusz Kurczyński

    (Department of Automotive Vehicles and Transportation, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland)

  • Bolesław Pracuch

    (Malopolskie Centre for Renewable Energy Sources “BioEnergia”, Szczytniki 16, 32-420 Szczytniki, Poland)

Abstract

The imperative of utilising alternative fuels for the operation of internal combustion engines stems from the requirements to reduce the emissions of greenhouse gases and other contaminants, the substantial demand for fuels, and the diminishing reserves of natural resources. The global inclination towards sustainable development necessitates the employment of biofuels as a substitute for fossil fuels. Nonetheless, the expenditures on raw materials for the manufacture of biodiesel remain substantial, thus underlining the importance of exploring solutions for reducing them. An instance of this could be the utilisation of plant and animal by-products, such as used frying oils and slaughterhouse waste, as feedstock for biodiesel production. Not only will this facilitate the creation of less costly biofuel, but it will also provide an effective solution for the management of post-production waste. The objective of the research delineated in this paper was to ascertain select physicochemical attributes of second-generation biodiesel, derived from spent frying oil, as well as mixtures of this biodiesel with diesel and biodiesel concentrations of 10, 20, and 30% ( v / v ). The biodiesel produced is the waste frying oil methyl esters WFOME. The proprietary GW-201 reactor was employed in the production of biodiesel. For WFOME biodiesel, DF diesel, and their blends—B10, B20, and B30—properties that influence the formation process of the combustible mixture, autoignition, and combustion of fuel–air mixtures in self-ignition engines were determined. The conducted research has established that “B” type fuels prepared from WFOME and DF present a viable alternative to fossil fuels. Pure biodiesel exhibited a marginally reduced lower heating value, however, in the case of fuel mixtures comprising up to 30% ( v / v ) biodiesel and diesel, the lower heating values approximated that of diesel. An elevated cetane number alongside an increased flash point of pure B100 biodiesel have been noted. The values of cetane number for WFOME and DF mixtures were found to be either comparable or marginally higher than those of pure DF diesel fuel.

Suggested Citation

  • Grzegorz Wcisło & Agnieszka Leśniak & Dariusz Kurczyński & Bolesław Pracuch, 2024. "Experimental Investigation of Physicochemical Properties of the Produced Biodiesel from Waste Frying Oil and Its Blend with Diesel Fuel," Energies, MDPI, vol. 17(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4175-:d:1461238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Experimental analysis of biofuel as an alternative fuel for diesel engines," Applied Energy, Elsevier, vol. 94(C), pages 224-231.
    2. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    2. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.
    3. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    4. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.
    5. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    6. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    7. D.D. Riley & X. Koutsoukos, 2014. "Probabilistic verification of a biodiesel production system using statistical model checking," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(5), pages 452-469, September.
    8. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    9. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    10. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    11. Boopathi, D. & Thiyagarajan, S. & Edwin Geo, V. & Madhankumar, S. & Gheith, R., 2018. "Effect of geraniol on performance, emission and combustion characteristics of CI engine fuelled with gutter oil obtained from different sources," Energy, Elsevier, vol. 157(C), pages 391-401.
    12. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    13. Reddy, M. Sarveshwar & Sharma, Nikhil & Agarwal, Avinash Kumar, 2016. "Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine," Renewable Energy, Elsevier, vol. 99(C), pages 1008-1018.
    14. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Zhu, Yixin & Xu, Jianchu & Mortimer, Peter E., 2011. "The influence of seed and oil storage on the acid levels of rubber seed oil, derived from Hevea brasiliensis grown in Xishuangbanna, China," Energy, Elsevier, vol. 36(8), pages 5403-5408.
    16. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    17. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    18. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    19. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    20. Daho, Tizane & Vaitilingom, Gilles & Ouiminga, Salifou K. & Piriou, Bruno & Zongo, Augustin S. & Ouoba, Samuel & Koulidiati, Jean, 2013. "Influence of engine load and fuel droplet size on performance of a CI engine fueled with cottonseed oil and its blends with diesel fuel," Applied Energy, Elsevier, vol. 111(C), pages 1046-1053.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4175-:d:1461238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.