IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp1008-1018.html
   My bibliography  Save this article

Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine

Author

Listed:
  • Reddy, M. Sarveshwar
  • Sharma, Nikhil
  • Agarwal, Avinash Kumar

Abstract

Vegetable oils and biodiesel have emerged as strong alternative fuels worldwide. However use of new fuels in existing engines leads to issues such as wear of vital moving components, and fuel injection equipment (FIE). It is important to ensure that new alternative fuel does not affect the FIE adversely. In this experimental study, a non-firing engine FIE simulator test rig prototype was developed and 250 h endurance test of FIE was performed with an objective to ensure the long-term compatibility and durability of biofuel blends. The components of FIE such as plunger, nozzle needle, valve, and valve holder were investigated for wear. Test fuels used in this study were Karanja blends (K20, K5), Jatropha blends (J20, J5), Biodiesel blends (B20, B5) and baseline mineral diesel in a non-firing engine FIE simulator. The compatibility of FIE with test fuels in terms of dimensional loss, weight loss and surface texture variations using optical microscopy before and after the endurance test was compared. Biodiesel blends showed relatively lower wear compared to mineral diesel however SVO blends showed no definite trend of the wear results compared to baseline mineral diesel.

Suggested Citation

  • Reddy, M. Sarveshwar & Sharma, Nikhil & Agarwal, Avinash Kumar, 2016. "Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine," Renewable Energy, Elsevier, vol. 99(C), pages 1008-1018.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1008-1018
    DOI: 10.1016/j.renene.2016.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, B. & Korstad, John & Sharma, Y.C., 2012. "A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3401-3408.
    2. Agarwal, Deepak & Kumar, Lokesh & Agarwal, Avinash Kumar, 2008. "Performance evaluation of a vegetable oil fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 33(6), pages 1147-1156.
    3. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    4. Agarwal, Deepak & Sinha, Shailendra & Agarwal, Avinash Kumar, 2006. "Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine," Renewable Energy, Elsevier, vol. 31(14), pages 2356-2369.
    5. Muñoz, M. & Moreno, F. & Monné, C. & Morea, J. & Terradillos, J., 2011. "Biodiesel improves lubricity of new low sulphur diesel fuels," Renewable Energy, Elsevier, vol. 36(11), pages 2918-2924.
    6. Jena, Jibanananda & Misra, Rahul Dev, 2014. "Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels," Energy, Elsevier, vol. 68(C), pages 411-419.
    7. Fernando, Sandun & Karra, Prashanth & Hernandez, Rafael & Jha, Saroj Kumar, 2007. "Effect of incompletely converted soybean oil on biodiesel quality," Energy, Elsevier, vol. 32(5), pages 844-851.
    8. Tormos, Bernardo & Novella, Ricardo & García, Antonio & Gargar, Kevin, 2010. "Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions," Renewable Energy, Elsevier, vol. 35(2), pages 368-378.
    9. Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Fazal, M.A. & Khan, Abdul Faheem & Fayaz, H. & Varman, M., 2013. "Impact of palm biodiesel blend on injector deposit formation," Applied Energy, Elsevier, vol. 111(C), pages 882-893.
    10. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    2. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Thangarasu, Vinoth & Balaji, B. & Ramanathan, Anand, 2019. "Experimental investigation of tribo-corrosion and engine characteristics of Aegle Marmelos Correa biodiesel and its diesel blends on direct injection diesel engine," Energy, Elsevier, vol. 171(C), pages 879-892.
    4. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    5. Channappagoudra, Manjunath, 2020. "Comparative study of baseline and modified engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 151(C), pages 604-618.
    6. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    7. Tainaka, Kazuki & Fan, Yong & Hashimoto, Nozomu & Nishida, Hiroyuki, 2019. "Effects of blending crude Jatropha oil and heavy fuel oil on the soot behavior of a steam atomizing burner," Renewable Energy, Elsevier, vol. 136(C), pages 358-364.
    8. S K Narendranathan & K Sudhagar & R Karthikeyan, 2019. "Optimization of engine operating parameters suitable for punnai oil application in CI engine using Grey relational method," Energy & Environment, , vol. 30(4), pages 732-751, June.
    9. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2019. "Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend," Renewable Energy, Elsevier, vol. 133(C), pages 216-232.
    10. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    11. Dmytro Zhuravel & Kyrylo Samoichuk & Serhii Petrychenko & Andrii Bondar & Taras Hutsol & Maciej Kuboń & Marcin Niemiec & Lyudmyla Mykhailova & Zofia Gródek-Szostak & Dmytro Sorokin, 2022. "Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels," Energies, MDPI, vol. 15(5), pages 1-16, February.
    12. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    13. Carmen Mata & Jakub Piaszyk & José Antonio Soriano & José Martín Herreros & Athanasios Tsolakis & Karl Dearn, 2020. "Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System," Energies, MDPI, vol. 13(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    5. Çelikten, İsmet & Mutlu, Emre & Solmaz, Hamit, 2012. "Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends," Renewable Energy, Elsevier, vol. 48(C), pages 122-126.
    6. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    7. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    8. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    9. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    10. Kumar, Shiva & Dinesha, P. & Bran, Ijas, 2017. "Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis," Energy, Elsevier, vol. 140(P1), pages 98-105.
    11. Balamurugan, T. & Arun, A. & Sathishkumar, G.B., 2018. "Biodiesel derived from corn oil – A fuel substitute for diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 772-778.
    12. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    13. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    14. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    16. Krishna, M.V.S. Murali & Prakash, T. Ohm & Ushasri, P. & Janardhan, N. & Murthy, P.V.K., 2016. "Experimental investigations on direct injection diesel engine with ceramic coated combustion chamber with carbureted alcohols and crude jatropha oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 606-628.
    17. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    18. Thiyagarajan, Subramanian & Varuvel, Edwin Geo & Martin, Leenus Jesu & Beddhannan, Nagalingam, 2019. "Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine," Renewable Energy, Elsevier, vol. 130(C), pages 1067-1081.
    19. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:1008-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.