IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4085-d1458005.html
   My bibliography  Save this article

Investigating the Effect of 2-Ethylhexyl Nitrate Cetane Improver (2-EHN) on the Autoignition Characteristics of a 1-Butanol–Diesel Blend

Author

Listed:
  • Hubert Kuszewski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Artur Jaworski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

Abstract

One promising oxygenate additive being considered as a fuel component for diesel engines is 1-butanol. However, since 1-butanol is characterized, like many other alcohols, by poor autoignition properties and, consequently, a low cetane number, the introduction of this additive into diesel fuel naturally worsens the autoignition properties of the blend so obtained. It is usual to consider a proportion of 1-butanol no higher than approx. 30% alcohol by volume. Thus, when considering the addition of 1-butanol to diesel fuel, it is necessary to improve the autoignition properties of such a blend. One such additive may be 2-ethylhexyl nitrate (2-EHN). This article determines the effect of the 2-EHN additive on the autoignition properties of a blend of 1-butanol and diesel fuel at an alcohol content of 30% ( v / v ). The tests were carried out using a constant volume combustion chamber method, which additionally made it possible to determine the effect of ambient gas temperature on the ignition delay (ID), combustion delay (CD) and derived cetane number (DCN), among other factors. The study showed, among other things, that with an increase in the mass proportion of 2-EHN in the 1-butanol–diesel blend (BDB) tested, the ignition and combustion delay were shortened, which resulted in an increase in the value of the derived cetane number.

Suggested Citation

  • Hubert Kuszewski & Artur Jaworski, 2024. "Investigating the Effect of 2-Ethylhexyl Nitrate Cetane Improver (2-EHN) on the Autoignition Characteristics of a 1-Butanol–Diesel Blend," Energies, MDPI, vol. 17(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4085-:d:1458005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Xiaobei & Li, Shuai & Yang, Jin & Liu, Bei, 2016. "Investigation into partially premixed combustion fueled with N-butanol-diesel blends," Renewable Energy, Elsevier, vol. 86(C), pages 723-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.
    2. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    3. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
    5. Arkadiusz Jamrozik & Wojciech Tutak, 2024. "Alcohols as Biofuel for a Diesel Engine with Blend Mode—A Review," Energies, MDPI, vol. 17(17), pages 1-30, September.
    6. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    7. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    8. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    9. Chiet Choo, Edwin Jia & Cheng, Xinwei & Scribano, Gianfranco & Ng, Hoon Kiat & Gan, Suyin, 2023. "Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion," Energy, Elsevier, vol. 268(C).
    10. Zhang, Tankai & Eismark, Jan & Munch, Karin & Denbratt, Ingemar, 2020. "Effects of a wave-shaped piston bowl geometry on the performance of heavy duty Diesel engines fueled with alcohols and biodiesel blends," Renewable Energy, Elsevier, vol. 148(C), pages 512-522.
    11. Xu, Lei & Yan, Fuwu & Zhou, Mengxiang & Wang, Yu, 2021. "An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing," Energy, Elsevier, vol. 218(C).
    12. Li, Gang & Lee, Timothy H. & Liu, Zhien & Lee, Chiafon F. & Zhang, Chunhua, 2019. "Effects of injection strategies on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends," Renewable Energy, Elsevier, vol. 130(C), pages 677-686.
    13. Rassoulinejad-Mousavi, Seyed Moein & Mao, Yijin & Zhang, Yuwen, 2018. "Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel," Renewable Energy, Elsevier, vol. 128(PA), pages 313-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4085-:d:1458005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.