IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300611.html
   My bibliography  Save this article

A customized transition towards smart homes: A fast framework for economic analyses

Author

Listed:
  • de Souza Dutra, Michael David
  • da Conceição Júnior, Gerson
  • de Paula Ferreira, William
  • Campos Chaves, Matheus Roberto

Abstract

Smart homes allow optimized energy usage, allowing households to reduce electricity bills or even make profits. By 2020, 20% of all households in Europe will be expected to become smart homes. Although smart homes seem to be the future for homes, many customers have the perception that a transition from current homes to smart ones is unprofitable. Adopting a smart home concept requires investments for which the households desire a positive return. A question in this context is the following: for a given household, when and/or what set of home appliances/technologies should be acquired so that the investment made by householder has a positive financial return? The available tool to answer that question can be time-consuming from a practical perspective. Based on our previous work, this paper proposes a framework to help the transition from current houses to smart homes considering customized electricity usage and economic measures. A tree algorithm is developed to decrease the time needed by an economic analysis of each possible acquisition combination of smart appliances or equipment for a given user. The proposed framework is tested on 40 cases covering all Brazilian capital cities, whose results are available online and may be used directly as an approximation for economic analyses. An example of one case is described in detail. Results show that the proposed tree algorithm is able to reduce days of CPU time to solve the problem and Net Present Value should be used as an economic measure to answer the aforementioned question.

Suggested Citation

  • de Souza Dutra, Michael David & da Conceição Júnior, Gerson & de Paula Ferreira, William & Campos Chaves, Matheus Roberto, 2020. "A customized transition towards smart homes: A fast framework for economic analyses," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300611
    DOI: 10.1016/j.apenergy.2020.114549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    2. Du, Y.F. & Jiang, L. & Li, Y.Z. & Counsell, J. & Smith, J.S., 2016. "Multi-objective demand side scheduling considering the operational safety of appliances," Applied Energy, Elsevier, vol. 179(C), pages 864-874.
    3. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    4. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    5. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    6. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    7. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    8. Shirazi, Elham & Jadid, Shahram, 2017. "Cost reduction and peak shaving through domestic load shifting and DERs," Energy, Elsevier, vol. 124(C), pages 146-159.
    9. Kichou, Sofiane & Skandalos, Nikolaos & Wolf, Petr, 2019. "Energy performance enhancement of a research centre based on solar potential analysis and energy management," Energy, Elsevier, vol. 183(C), pages 1195-1210.
    10. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    11. Xie, Y. & Gilmour, M.S. & Yuan, Y. & Jin, H. & Wu, H., 2017. "A review on house design with energy saving system in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 29-52.
    12. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    13. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    14. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    15. Coffman, Makena & Bernstein, Paul & Wee, Sherilyn, 2017. "Integrating electric vehicles and residential solar PV," Transport Policy, Elsevier, vol. 53(C), pages 30-38.
    16. Mohammad Rasoul Narimani & Maigha & Jhi-Young Joo & Mariesa Crow, 2017. "Multi-Objective Dynamic Economic Dispatch with Demand Side Management of Residential Loads and Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-18, May.
    17. Gur, K. & Chatzikyriakou, D. & Baschet, C. & Salomon, M., 2018. "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis," Energy Policy, Elsevier, vol. 113(C), pages 535-545.
    18. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    19. Chatzisideris, Marios D. & Ohms, Pernille K. & Espinosa, Nieves & Krebs, Frederik C. & Laurent, Alexis, 2019. "Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption," Applied Energy, Elsevier, vol. 256(C).
    20. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    21. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    22. Clemente-Císcar, M. & San Matías, S. & Giner-Bosch, V., 2014. "A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings," European Journal of Operational Research, Elsevier, vol. 239(1), pages 276-285.
    23. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    24. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    2. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    3. Ting Chen & Lei Gan & Sheeraz Iqbal & Marek Jasiński & Mohammed A. El-Meligy & Mohamed Sharaf & Samia G. Ali, 2023. "A Novel Evolving Framework for Energy Management in Combined Heat and Electricity Systems with Demand Response Programs," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    4. Shu, Lei & Mo, Yunjeong & Zhao, Dong, 2024. "Energy retrofits for smart and connected communities: Scopes and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Wang, Wei & Liu, Ke & Zhang, Muxing & Shen, Yuchi & Jing, Rui & Xu, Xiaodong, 2021. "From simulation to data-driven approach: A framework of integrating urban morphology to low-energy urban design," Renewable Energy, Elsevier, vol. 179(C), pages 2016-2035.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    2. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    4. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    5. Angela María Gómez-Restrepo & Juan David González-Ruiz & Sergio Botero Botero, 2024. "Financial Investment Valuation Models for Photovoltaic and Energy Storage Projects: Trends and Challenges," Energies, MDPI, vol. 17(11), pages 1-29, May.
    6. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    7. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    8. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    9. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).
    11. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    12. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    13. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    14. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    15. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    16. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    17. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    18. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    19. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
    20. Marion R. Dam & Marten D. van der Laan, 2024. "Techno-Economic Assessment of Battery Systems for PV-Equipped Households with Dynamic Contracts: A Case Study of The Netherlands," Energies, MDPI, vol. 17(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.