IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics0306261920316706.html
   My bibliography  Save this article

Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration

Author

Listed:
  • Nieta, Agustín A. Sánchez de la
  • Ilieva, Iliana
  • Gibescu, Madeleine
  • Bremdal, Bernt
  • Simonsen, Stig
  • Gramme, Eivind

Abstract

This paper analyses a local electricity system (LES) comprising photovoltaic production (PV), a connection to the distribution network, local loads and an energy storage system (ESS). Given the flexibility of the ESS, the LES can provide a peak shaving service (PSS) to the grid operator based on the actual monthly power tariff. This paper proposes a stochastic mixed-integer linear programming problem that maximises the expected operating profit of the LES midterm. Assuming a behind customers’ smart meter configuration, income is derived from selling the energy of prosumers to other external electrical areas. If the costs are higher than the income, the net profit will be negative, i.e. a net loss. The cost component of the objective function can be reduced through the management of local resources and by providing PSS to the distribution network operator to minimise the power cost of the monthly power tariff. The model is tested for 720 h (considering a month of 30 days) in three cases: (i) without PV and ESS; (ii) with PV and ESS, where losses are 0%; (iii) with PV and ESS, where losses are 18%. Due to the monthly power tariff, the net loss of the LES is reduced through the optimal management of local resources when the ESS losses are lower than 18%. To assess seasonal implications about the LES, the 12 months of the year are also tested. The month of October indicated the highest peak shaving, while the lowest peak shaving depended on the ESS losses.

Suggested Citation

  • Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316706
    DOI: 10.1016/j.apenergy.2020.116282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920316706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mengelkamp, Esther & Schönland, Thomas & Huber, Julian & Weinhardt, Christof, 2019. "The value of local electricity - A choice experiment among German residential customers," Energy Policy, Elsevier, vol. 130(C), pages 294-303.
    2. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    3. Hélène Le Cadre, 2019. "On the efficiency of local electricity markets under decentralized and centralized designs: a multi-leader Stackelberg game analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 953-984, December.
    4. Chen, Kaixuan & Lin, Jin & Song, Yonghua, 2019. "Trading strategy optimization for a prosumer in continuous double auction-based peer-to-peer market: A prediction-integration model," Applied Energy, Elsevier, vol. 242(C), pages 1121-1133.
    5. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    6. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2016. "Prosumer bidding and scheduling in electricity markets," Energy, Elsevier, vol. 94(C), pages 828-843.
    7. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    8. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    9. Simone Minniti & Niyam Haque & Phuong Nguyen & Guus Pemen, 2018. "Local Markets for Flexibility Trading: Key Stages and Enablers," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Chapaloglou, Spyridon & Nesiadis, Athanasios & Iliadis, Petros & Atsonios, Konstantinos & Nikolopoulos, Nikos & Grammelis, Panagiotis & Yiakopoulos, Christos & Antoniadis, Ioannis & Kakaras, Emmanuel, 2019. "Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system," Applied Energy, Elsevier, vol. 238(C), pages 627-642.
    11. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Sánchez de la Nieta, Agustín A. & Paterakis, Nikolaos G. & Gibescu, Madeleine, 2020. "Participation of photovoltaic power producers in short-term electricity markets based on rescheduling and risk-hedging mapping," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    2. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    3. Heidi S. Nygård & Stig Ødegaard Ottesen & Olav Henrik Skonnord, 2024. "Profitability Analyses for Residential Battery Investments: A Norwegian Case Study," Energies, MDPI, vol. 17(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    4. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    5. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    6. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    8. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    9. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Heinrich, Carsten & Ziras, Charalampos & Syrri, Angeliki L.A. & Bindner, Henrik W., 2020. "EcoGrid 2.0: A large-scale field trial of a local flexibility market," Applied Energy, Elsevier, vol. 261(C).
    11. Vineet Jagadeesan Nair & Venkatesh Venkataramanan & Rabab Haider & Anuradha Annaswamy, 2021. "A Hierarchical Local Electricity Market for a DER-rich Grid Edge," Papers 2110.02358, arXiv.org, revised Mar 2022.
    12. Alexandra Lüth & Jens Weibezahn & Jan Martin Zepter, 2020. "On Distributional Effects in Local Electricity Market Designs—Evidence from a German Case Study," Energies, MDPI, vol. 13(8), pages 1-26, April.
    13. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    14. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    15. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    16. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    17. Mengelkamp, Esther & Schlund, David & Weinhardt, Christof, 2019. "Development and real-world application of a taxonomy for business models in local energy markets," Applied Energy, Elsevier, vol. 256(C).
    18. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Longjian Piao & Laurens de Vries & Mathijs de Weerdt & Neil Yorke-Smith, 2019. "Electricity Markets for DC Distribution Systems: Design Options," Energies, MDPI, vol. 12(14), pages 1-16, July.
    20. Alonso Pedrero, Raquel & Crespo del Granado, Pedro, 2023. "Assessing the impact of energy communities on retailers’ balancing positions in the power market," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.