IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v345y2023ics030626192300675x.html
   My bibliography  Save this article

Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid

Author

Listed:
  • Giovanniello, Michael Anthony
  • Wu, Xiao-Yu

Abstract

Microgrids with high shares of variable renewable energy resources, such as wind, experience intermittent and variable electricity generation that causes supply–demand mismatches over multiple timescales. Lithium-ion batteries (LIBs) and hydrogen (H2) are promising technologies for short- and long-duration energy storage, respectively. A hybrid LIB-H2 energy storage system could thus offer a more cost-effective and reliable solution to balancing demand in renewable microgrids. Recent literature has modeled these hybrid storage systems; however, it remains unknown how anticipated, but uncertain, cost reductions and performance improvements will impact overall system cost and composition in the long term. Here, we developed a mixed integer linear programming (MILP) model for sizing the components (wind turbine, electrolyser, fuel cell, hydrogen storage, and lithium-ion battery) of a 100% wind-supplied microgrid in Canada. Compared to using just LIB or H2 alone for energy storage, the hybrid storage system was found to provide significant cost reductions. A sensitivity analysis showed that components of the H2 subsystem meaningfully impact the total microgrid cost, while the impact of the LIB subsystem is dominated by its energy storage capacity costs. Regarding efficiency, decreased electrolyzer efficiency causes the greatest increase in total system cost, whereas increased fuel cell efficiency has the greatest potential to reduce total system cost. As technologies evolve, the H2 subsystem assumes a greater role (i.e., it is larger and receives/supplies more energy over more hours) compared to the LIB subsystem, but LIB continues to provide frequent intra-day balancing in the microgrid.

Suggested Citation

  • Giovanniello, Michael Anthony & Wu, Xiao-Yu, 2023. "Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid," Applied Energy, Elsevier, vol. 345(C).
  • Handle: RePEc:eee:appene:v:345:y:2023:i:c:s030626192300675x
    DOI: 10.1016/j.apenergy.2023.121311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300675X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Zatti, Matteo & Gabba, Marco & Freschini, Marco & Rossi, Michele & Gambarotta, Agostino & Morini, Mirko & Martelli, Emanuele, 2019. "k-MILP: A novel clustering approach to select typical and extreme days for multi-energy systems design optimization," Energy, Elsevier, vol. 181(C), pages 1051-1063.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    2. Huang, Z.F. & Chen, W.D. & Wan, Y.D. & Shao, Y.L. & Islam, M.R. & Chua, K.J., 2024. "Techno-economic comparison of different energy storage configurations for renewable energy combined cooling heating and power system," Applied Energy, Elsevier, vol. 356(C).
    3. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    4. Cui, Feifei & An, Dou & Xi, Huan, 2024. "Integrated energy hub dispatch with a multi-mode CAES–BESS hybrid system: An option-based hierarchical reinforcement learning approach," Applied Energy, Elsevier, vol. 374(C).
    5. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    6. Hasan Dinçer & Serhat Yüksel & Bijan Abadi, 0000. "Techno-economic Assessment of Wind Energy Storage Technologies via Decision-Making Modelling," Proceedings of Economics and Finance Conferences 14716414, International Institute of Social and Economic Sciences.
    7. Motalleb Miri & Ivan Tolj & Frano Barbir, 2024. "Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources," Energies, MDPI, vol. 17(15), pages 1-26, August.
    8. Yang, Guoming & Yang, Dazhi & Liu, Bai & Zhang, Hao, 2024. "The role of short- and long-duration energy storage in reducing the cost of firm photovoltaic generation," Applied Energy, Elsevier, vol. 374(C).
    9. Xu, Xuesong & Xu, Kai & Zeng, Ziyang & Tang, Jiale & He, Yuanxing & Shi, Guangze & Zhang, Tao, 2024. "Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    2. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    5. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    6. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    7. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    8. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    9. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    11. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    12. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    13. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    14. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Pilotti, L. & Colombari, M. & Castelli, A.F. & Binotti, M. & Giaconia, A. & Martelli, E., 2023. "Simultaneous design and operational optimization of hybrid CSP-PV plants," Applied Energy, Elsevier, vol. 331(C).
    16. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    17. Hassan, Muhammed A. & Khalil, Adel & Abubakr, Mohamed, 2021. "Selection methodology of representative meteorological days for assessment of renewable energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 34-51.
    18. Li, Hongze & Sun, Dongyang & Li, Bingkang & Wang, Xuejie & Zhao, Yihang & Wei, Mengru & Dang, Xiaolu, 2023. "Collaborative optimization of VRB-PS hybrid energy storage system for large-scale wind power grid integration," Energy, Elsevier, vol. 265(C).
    19. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    20. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:345:y:2023:i:c:s030626192300675x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.