IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3549-d1438567.html
   My bibliography  Save this article

Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads

Author

Listed:
  • Huanzhou Wei

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Shahong Zhu

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Yulin Mao

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Junjie Gao

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Zifan Shen

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Jiaxing Li

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Hairui Yang

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100124, China)

Abstract

In order to achieve the “dual-carbon” goal, China’s energy sector is rapidly evolving towards a green and low-carbon future, with the integration of large-scale new energy into the power grid. However, due to the fluctuating characteristics of new energy generation, the difficulty of grid peaking has gradually increased. Consequently, enhancing flexibility and achieving wide and rapid peak shaving have emerged as the primary development directions for thermal power units. Circulating fluidized bed (CFB) boilers have been widely developed due to their excellent coal adaptability, large load regulation range, and low-cost pollutant removal ability. However, the flexibility of load variations in most CFB units is not high, limited by the substantial inertia of the furnace side and fluctuating pollutant emissions. This review is conducted with respect to the boiler side to analyze inertia sources and effects on the system while processing rapid variable loads, including gas–solid flow inertia, fuel combustion inertia, and heat transfer inertia. It discusses the development of numerical simulation models for CFB boilers and points out corresponding applications and limitations in simulating dynamic characteristics during load changes. Through experimental bench tests and numerical simulation, it investigates the dynamic characteristics of pivotal parameters in the variable load process. Moreover, the pivotal elements influencing the variable load performance and viable regulatory techniques are revealed, thereby furnishing theoretical guidance for enhancing the unit flexibility and peak shifting rates of China’s CFB boilers.

Suggested Citation

  • Huanzhou Wei & Shahong Zhu & Yulin Mao & Junjie Gao & Zifan Shen & Jiaxing Li & Hairui Yang, 2024. "Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads," Energies, MDPI, vol. 17(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3549-:d:1438567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alobaid, Falah & Peters, Jens & Amro, Rami & Epple, Bernd, 2020. "Dynamic process simulation for Polish lignite combustion in a 1MWth circulating fluidized bed during load changes," Applied Energy, Elsevier, vol. 278(C).
    2. Sandberg, Jan & Fdhila, Rebei Bel & Dahlquist, Erik & Avelin, Anders, 2011. "Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler," Applied Energy, Elsevier, vol. 88(5), pages 1813-1824, May.
    3. Gao, Mingming & Hong, Feng & Liu, Jizhen, 2017. "Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units," Applied Energy, Elsevier, vol. 185(P1), pages 463-471.
    4. Jiahang Zhang & Jianguo Zhu & Jingzhang Liu, 2023. "Experimental Studies on Preheating Combustion Characteristics of Low-Rank Coal with Different Particle Sizes and Kinetic Simulation of Nitrogen Oxide," Energies, MDPI, vol. 16(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
    2. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    3. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    4. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    5. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    6. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    7. Yu Jiang & Zihua Tang & Xiaoyu Zhang & Chao Wang & Guoliang Song & Qinggang Lyu, 2023. "Comparative Analysis of Combustion Characteristics of a CFB Boiler during the Changes Process between High-Rated Loads and Low-Rated Loads," Energies, MDPI, vol. 16(17), pages 1-15, August.
    8. Dragan Cveticanin & Nicolae Herisanu & Istvan Biro & Miodrag Zukovic & Livija Cveticanin, 2020. "Vibration of the Biomass Boiler Tube Excited with Impact of the Cleaning Device," Mathematics, MDPI, vol. 8(9), pages 1-13, September.
    9. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    10. Yuanhao Shi & Jie Wen & Fangshu Cui & Jingcheng Wang, 2019. "An Optimization Study on Soot-Blowing of Air Preheaters in Coal-Fired Power Plant Boilers," Energies, MDPI, vol. 12(5), pages 1-15, March.
    11. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    12. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    13. Yuanhao Shi & Qiang Li & Jie Wen & Fangshu Cui & Xiaoqiong Pang & Jianfang Jia & Jianchao Zeng & Jingcheng Wang, 2019. "Soot Blowing Optimization for Frequency in Economizers to Improve Boiler Performance in Coal-Fired Power Plant," Energies, MDPI, vol. 12(15), pages 1-19, July.
    14. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    15. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    16. Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
    17. Namkung, Hueon & Xu, Li-Hua & Kang, Tae-Jin & Kim, Dae Sung & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "Prediction of coal fouling using an alternative index under the gasification condition," Applied Energy, Elsevier, vol. 102(C), pages 1246-1255.
    18. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    19. Hong, Feng & Chen, Jiyu & Wang, Rui & Long, Dongteng & Yu, Haoyang & Gao, Mingming, 2021. "Realization and performance evaluation for long-term low-load operation of a CFB boiler unit," Energy, Elsevier, vol. 214(C).
    20. Xiaohang Li & Yang Teng & Kai Zhang & Hao Peng & Fangqin Cheng & Kunio Yoshikawa, 2020. "Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant," Energies, MDPI, vol. 13(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3549-:d:1438567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.