IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p958-d213306.html
   My bibliography  Save this article

An Optimization Study on Soot-Blowing of Air Preheaters in Coal-Fired Power Plant Boilers

Author

Listed:
  • Yuanhao Shi

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
    Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China)

  • Jie Wen

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China)

  • Fangshu Cui

    (School of Data Science and Technology, North University of China, Taiyuan 030051, China)

  • Jingcheng Wang

    (Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
    Autonomous Systems and Intelligent Control International Joint Research Center, Xi’an Technological University, Xi’an 710021, China)

Abstract

This paper presents a comprehensive approach for optimization of soot-blowing of air preheaters in a coal-fired power plant boiler. In the method, modeling of the cleanliness factor is firstly proposed to monitor the ash deposition status of the air preheaters. Then, the statistical fitting of the ash fouling status is subsequently obtained to analyze the ash fouling dynamics and assessment of optimized soot-blowing strategies. Soot-blowing strategies are finally developed to optimize the steam consumption and heat transfer efficiency. Our methods can achieve the fouling monitoring and soot-blowing optimization of air preheater (APH) by using the existing monitoring data, not requiring additional special instruments and complex computing systems. The methodology is validated with the actual operating data of a 300 MW coal-fired power plant boiler. The results show the effectiveness of the proposed method. It can be used for the soot-blowing optimization in most coal-fired power plant boiler with air preheaters.

Suggested Citation

  • Yuanhao Shi & Jie Wen & Fangshu Cui & Jingcheng Wang, 2019. "An Optimization Study on Soot-Blowing of Air Preheaters in Coal-Fired Power Plant Boilers," Energies, MDPI, vol. 12(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:958-:d:213306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Dong & Sufen Li & Jun Xie & Jian Han, 2013. "Experimental Studies on the Normal Impact of Fly Ash Particles with Planar Surfaces," Energies, MDPI, vol. 6(7), pages 1-18, July.
    2. Ming Dong & Jian Han & Sufen Li & Hang Pu, 2013. "A Dynamic Model for the Normal Impact of Fly Ash Particle with a Planar Surface," Energies, MDPI, vol. 6(8), pages 1-20, August.
    3. Yu Han & Cheng Xu & Gang Xu & Yuwen Zhang & Yongping Yang, 2017. "An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NO x Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions," Energies, MDPI, vol. 10(10), pages 1-18, September.
    4. Sandberg, Jan & Fdhila, Rebei Bel & Dahlquist, Erik & Avelin, Anders, 2011. "Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler," Applied Energy, Elsevier, vol. 88(5), pages 1813-1824, May.
    5. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanhao Shi & Mengwei Li & Jie Wen & Yanru Yang & Fangshu Cui & Jianchao Zeng, 2021. "Heat Transfer Efficiency Prediction of Coal-Fired Power Plant Boiler Based on CEEMDAN-NAR Considering Ash Fouling," Energies, MDPI, vol. 14(13), pages 1-19, July.
    2. Yuanhao Shi & Qiang Li & Jie Wen & Fangshu Cui & Xiaoqiong Pang & Jianfang Jia & Jianchao Zeng & Jingcheng Wang, 2019. "Soot Blowing Optimization for Frequency in Economizers to Improve Boiler Performance in Coal-Fired Power Plant," Energies, MDPI, vol. 12(15), pages 1-19, July.
    3. Shuiguang Tong & Xiang Zhang & Zheming Tong & Yanling Wu & Ning Tang & Wei Zhong, 2019. "Online Ash Fouling Prediction for Boiler Heating Surfaces based on Wavelet Analysis and Support Vector Regression," Energies, MDPI, vol. 13(1), pages 1-20, December.
    4. Fangshu Cui & Sheng Qin & Jing Zhang & Mengwei Li & Yuanhao Shi, 2022. "A Hybrid Method for Prediction of Ash Fouling on Heat Transfer Surfaces," Energies, MDPI, vol. 15(13), pages 1-15, June.
    5. Aleksandra V. Varganova & Vadim R. Khramshin & Andrey A. Radionov, 2023. "Operating Modes Optimization for the Boiler Units of Industrial Steam Plants," Energies, MDPI, vol. 16(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanhao Shi & Qiang Li & Jie Wen & Fangshu Cui & Xiaoqiong Pang & Jianfang Jia & Jianchao Zeng & Jingcheng Wang, 2019. "Soot Blowing Optimization for Frequency in Economizers to Improve Boiler Performance in Coal-Fired Power Plant," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    3. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    4. Ming Dong & Jun Xie & Linying Bai & Sufen Li, 2014. "An Experimental Investigation on the Influence of Temperature on the Normal Impact of Fine Particles with a Plane Surface," Energies, MDPI, vol. 7(4), pages 1-16, March.
    5. Yue Dai & Nan Li & Rongrong Gu & Xiaodong Zhu, 2018. "Can China’s Carbon Emissions Trading Rights Mechanism Transform its Manufacturing Industry? Based on the Perspective of Enterprise Behavior," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    6. Shuiguang Tong & Xiang Zhang & Zheming Tong & Yanling Wu & Ning Tang & Wei Zhong, 2019. "Online Ash Fouling Prediction for Boiler Heating Surfaces based on Wavelet Analysis and Support Vector Regression," Energies, MDPI, vol. 13(1), pages 1-20, December.
    7. Hongchun Shu & Yiming Han & Ran Huang & Yutao Tang & Pulin Cao & Bo Yang & Yu Zhang, 2020. "Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study," Energies, MDPI, vol. 13(6), pages 1-22, March.
    8. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    9. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    10. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    11. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.
    12. Hyun-Chul Lee & Eul-Bum Lee & Douglas Alleman, 2018. "Schedule Modeling to Estimate Typical Construction Durations and Areas of Risk for 1000 MW Ultra-Critical Coal-Fired Power Plants," Energies, MDPI, vol. 11(10), pages 1-15, October.
    13. Jian Chai & Wenyue Fan & Jing Han, 2019. "Does the Energy Efficiency of Power Companies Affect Their Industry Status? A DEA Analysis of Listed Companies in Thermal Power Sector," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    14. Yali Zhang & Yihan Wang & Xiaoshu Hou, 2019. "Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    15. Dragan Cveticanin & Nicolae Herisanu & Istvan Biro & Miodrag Zukovic & Livija Cveticanin, 2020. "Vibration of the Biomass Boiler Tube Excited with Impact of the Cleaning Device," Mathematics, MDPI, vol. 8(9), pages 1-13, September.
    16. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
    17. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    18. Jun Xie & Haodong Ma & Chenxi Li & Shaobai Li & Zhengren Zhu & Zheng Fu, 2021. "The Critical Capture Velocity of Coal Ash Particles Oblique Impact on a Stainless Steel Surface," Energies, MDPI, vol. 14(17), pages 1-17, August.
    19. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    20. Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:958-:d:213306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.