IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3532-d1437899.html
   My bibliography  Save this article

Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation

Author

Listed:
  • Lech J. Sitnik

    (Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Monika Andrych-Zalewska

    (Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Radostin Dimitrov

    (Department of Technical Engineering, Technical University of Varna, Studentska 1, 9010 Varna, Bulgaria)

  • Veselin Mihaylov

    (Department of Technical Engineering, Technical University of Varna, Studentska 1, 9010 Varna, Bulgaria)

  • Anna Mielińska

    (Proeko Foundation, Dworcowa 11a/7, 50-456 Wroclaw, Poland)

Abstract

The desire to maintain CO 2 concentrations in the global atmosphere implies the need to introduce ’new’ energy carriers for transport applications. Therefore, the operational consumption of each such potential medium in the ’natural’ exploitation of vehicles must be assessed. A useful assessment method may be the vehicle’s energy footprint resulting from the theory of cumulative fuel consumption, presented in the article. Using a (very modest) database of long-term use of hydrogen-powered cars, the usefulness of this method was demonstrated. Knowing the energy footprint of vehicles of a given brand and type and the statistical characteristics of the footprint elements, it is also possible to assess vehicle fleets in terms of energy demand. The database on the use of energy carriers, such as hydrogen, in the long-term operation of passenger vehicles is still relatively modest; however, as it has been shown, valuable data can be obtained to assess the energy demand of vehicles of a given brand and type. Access to a larger operational database will allow for wider use of the presented method.

Suggested Citation

  • Lech J. Sitnik & Monika Andrych-Zalewska & Radostin Dimitrov & Veselin Mihaylov & Anna Mielińska, 2024. "Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation," Energies, MDPI, vol. 17(14), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3532-:d:1437899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    2. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    3. Qusay Hassan & Itimad D. J. Azzawi & Aws Zuhair Sameen & Hayder M. Salman, 2023. "Hydrogen Fuel Cell Vehicles: Opportunities and Challenges," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    4. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    2. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    3. Shiyou Tao & Zhaohui Peng & Weiguang Zheng, 2024. "Energy Management Strategy of Fuel Cell Commercial Vehicles Based on Adaptive Rules," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    4. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    5. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    6. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    7. George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
    8. Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
    9. He, Yingdong & Zhou, Yuekuan & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2022. "An inter-city energy migration framework for regional energy balance through daily commuting fuel-cell vehicles," Applied Energy, Elsevier, vol. 324(C).
    10. Mingyue Hu & Xiao Wu & Yue Yuan & Chuanbo Xu, 2024. "Competitive Analysis of Heavy Trucks with Five Types of Fuels under Different Scenarios—A Case Study of China," Energies, MDPI, vol. 17(16), pages 1-21, August.
    11. Han, Yuan & Gao, Wenzhi & Qin, Yanzhou, 2024. "Conceptual design and multi-objective optimization of a hybrid system based on direct ammonia protonic ceramic fuel cell and alkali metal thermal electric converter," Energy, Elsevier, vol. 297(C).
    12. Paul Grunow, 2022. "Decentral Hydrogen," Energies, MDPI, vol. 15(8), pages 1-15, April.
    13. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    14. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Li, Ruiqi & Ren, Hongbo & Wu, Qiong & Li, Qifen & Gao, Weijun, 2024. "Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading," Renewable Energy, Elsevier, vol. 227(C).
    16. Nestor F. Guerrero-Rodríguez & Daniel A. De La Rosa-Leonardo & Ricardo Tapia-Marte & Francisco A. Ramírez-Rivera & Juan Faxas-Guzmán & Alexis B. Rey-Boué & Enrique Reyes-Archundia, 2024. "An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    17. Fady M. A. Hassouna & Kangwon Shin, 2024. "The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles," Energies, MDPI, vol. 17(19), pages 1-10, October.
    18. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    19. Zheng, Siqian & Jin, Xin & Huang, Gongsheng & Lai, Alvin CK., 2022. "Coordination of commercial prosumers with distributed demand-side flexibility in energy sharing and management system," Energy, Elsevier, vol. 248(C).
    20. Lyu, Shan & Huang, Xiaomei & Peng, Shini & Sun, Mengxiao & Qi, Qi & Aimaieraili, Dulikunjiang, 2024. "A novel method for analyzing the leakage and diffusion of hydrogen: First arrival time distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3532-:d:1437899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.