IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v45y2024ics1874548224000210.html
   My bibliography  Save this article

Impact of space systems capabilities and their role as critical infrastructure

Author

Listed:
  • Carlo, Mr. Antonio
  • Breda, Dr. Paola

Abstract

The cyber domain has led to growth in current satellite capabilities, which have become essential due to the increased use of both civil and military critical infrastructure (CI) management systems. In recent decades, outer space has proven to be an increasingly critical sector for the international management of commercial CI, with private operators acting on both multi- and transnational levels. However, the space domain is characterised by not only opportunities but also risks and threats. As the security implications of space were not sufficiently considered at the beginning of the space era, some of the predominant risks currently extend into the commercial sphere. These risks must be considered to ensure the resilience of connected CIs in outer space. Security is a vital issue in the cyber and space domains and should be considered in every phase of a space system's life cycle, from the development and manufacturing of space assets to their deployment and end of life. This involves CI in several sectors, each of which exhibits different but interrelated risks. For example, telecommunications and location systems increasingly require the use of CI, which creates a fragile interdependence that is extremely vulnerable to threats. This paper underlines the importance of recognising space systems as CI and emphasises the need for a better integration of these assets in a system-of-systems analysis. The consequences of global satellite disruption on terrestrial CI are used to support this view. In such a disruptive scenario, mitigation measures based on in-orbit servicing or responsive space capabilities, for example, would allow CI to be restored to first ensure national security followed by commercial activities. Moreover, this paper provides an overview of the legal and policy aspects of using space systems’ capabilities in CI to better understand their implications and encourage the development of recommendations.

Suggested Citation

  • Carlo, Mr. Antonio & Breda, Dr. Paola, 2024. "Impact of space systems capabilities and their role as critical infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000210
    DOI: 10.1016/j.ijcip.2024.100680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qusay Hassan & Itimad D. J. Azzawi & Aws Zuhair Sameen & Hayder M. Salman, 2023. "Hydrogen Fuel Cell Vehicles: Opportunities and Challenges," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    2. George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
    3. Mingyue Hu & Xiao Wu & Yue Yuan & Chuanbo Xu, 2024. "Competitive Analysis of Heavy Trucks with Five Types of Fuels under Different Scenarios—A Case Study of China," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Nestor F. Guerrero-Rodríguez & Daniel A. De La Rosa-Leonardo & Ricardo Tapia-Marte & Francisco A. Ramírez-Rivera & Juan Faxas-Guzmán & Alexis B. Rey-Boué & Enrique Reyes-Archundia, 2024. "An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    5. Lech J. Sitnik & Monika Andrych-Zalewska & Radostin Dimitrov & Veselin Mihaylov & Anna Mielińska, 2024. "Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation," Energies, MDPI, vol. 17(14), pages 1-25, July.
    6. David Machacek & Nazim Yasar & Fabio Widmer & Thomas Huber & Christopher Onder, 2024. "Energy Management of Hydrogen Hybrid Electric Vehicles—Online-Capable Control," Energies, MDPI, vol. 17(10), pages 1-25, May.
    7. Tymoteusz Miller & Irmina Durlik & Ewelina Kostecka & Adrianna Łobodzińska & Marcin Matuszak, 2024. "The Emerging Role of Artificial Intelligence in Enhancing Energy Efficiency and Reducing GHG Emissions in Transport Systems," Energies, MDPI, vol. 17(24), pages 1-31, December.
    8. Masoud Arabbeiki & Mohsen Mansourkiaei & Domenico Ferrero & Massimo Santarelli, 2024. "Ejectors in Hydrogen Recirculation for PEMFC-Based Systems: A Comprehensive Review of Design, Operation, and Numerical Simulations," Energies, MDPI, vol. 17(19), pages 1-22, September.
    9. Dominika Siwiec & Wiesław Frącz & Andrzej Pacana & Grzegorz Janowski & Łukasz Bąk, 2024. "Analysis of the Ecological Footprint from the Extraction and Processing of Materials in the LCA Phase of Lithium-Ion Batteries," Sustainability, MDPI, vol. 16(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.