IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p278-d1313663.html
   My bibliography  Save this article

Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC)

Author

Listed:
  • Pandu Ranga Tirumalasetti

    (Department of Mechanical Engineering, Fuel Cell Centre, Yuan Ze University, ChungeLi District, Taoyuan City 32003, Taiwan)

  • Fang-Bor Weng

    (Department of Mechanical Engineering, Fuel Cell Centre, Yuan Ze University, ChungeLi District, Taoyuan City 32003, Taiwan)

  • Mangaliso Menzi Dlamini

    (Department of Mechanical Engineering, Fuel Cell Centre, Yuan Ze University, ChungeLi District, Taoyuan City 32003, Taiwan)

  • Chia-Hung Chen

    (Fucell Co., Ltd., Taoyuan City 33464, Taiwan)

Abstract

The optimization of reactant and product mass transfer within fuel cells stands as a critical determinant for achieving optimal fuel-cell performance. With a specific focus on stationary applications, this study delves into the comprehensive examination of fuel-cell mass transfer properties, employing a sophisticated blend of computational fluid dynamics (CFD) and the innovative design of a double-layered wire mesh (DLWM) as a flow field and gas diffusion layer. The investigation notably contrasts a meticulously developed 3D fine mesh flow field with a numerical model of the integrated DLWM implemented on the cathode end of a proton exchange membrane fuel cell (PEMFC). Evaluations reveal that the 3D fine mesh experiences a notable threefold increase in pressure drop compared to the DLWM flow field, indicative of the enhanced efficiency achieved by the DLWM configuration. Oxygen distribution analyses further underscore the promising performance of both the 3D fine mesh and the proposed DLWM, with the DLWM showcasing additional improvements in water removal capabilities within the cell. Impressively, the DLWM attains a remarkable maximum current density of 2137.17 mA/cm 2 at 0.55 V, indicative of its superior performance over the 3D fine mesh, while also demonstrating the potential for cost-effectiveness and scalability in mass production.

Suggested Citation

  • Pandu Ranga Tirumalasetti & Fang-Bor Weng & Mangaliso Menzi Dlamini & Chia-Hung Chen, 2024. "Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC)," Energies, MDPI, vol. 17(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:278-:d:1313663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    2. Li, Yubai & Zhou, Zhifu & Liu, Xianglei & Wu, Wei-Tao, 2019. "Modeling of PEM fuel cell with thin MEA under low humidity operating condition," Applied Energy, Elsevier, vol. 242(C), pages 1513-1527.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    5. Song Yan & Mingyang Yang & Chuanyu Sun & Sichuan Xu, 2023. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method," Energies, MDPI, vol. 16(16), pages 1-18, August.
    6. Jang, Jiin-Yuh & Cheng, Chin-Hsiang & Liao, Wang-Ting & Huang, Yu-Xian & Tsai, Ying-Chi, 2012. "Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels," Applied Energy, Elsevier, vol. 99(C), pages 67-79.
    7. Kim, Bosung & Lee, Yongtaek & Woo, Ahyoung & Kim, Yongchan, 2013. "Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs," Applied Energy, Elsevier, vol. 111(C), pages 441-448.
    8. Chen, Huicui & Liu, Biao & Zhang, Tong & Pei, Pucheng, 2019. "Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions," Applied Energy, Elsevier, vol. 255(C).
    9. Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
    10. Wang, Chin-Tsan & Hu, Yuh-Chung & Zheng, Pei-Lun, 2010. "Novel biometric flow slab design for improvement of PEMFC performance," Applied Energy, Elsevier, vol. 87(4), pages 1366-1375, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
    2. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    3. Yin, Yan & Wu, Shiyu & Qin, Yanzhou & Otoo, Obed Nenyi & Zhang, Junfeng, 2020. "Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 271(C).
    4. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    5. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    6. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    8. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Self-humidifying effect of air self-circulation system for proton exchange membrane fuel cell engines," Renewable Energy, Elsevier, vol. 164(C), pages 1143-1155.
    9. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    10. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    11. Cheng, Shan-Jen & Miao, Jr-Ming & Wu, Sheng-Ju, 2013. "Use of metamodeling optimal approach promotes the performance of proton exchange membrane fuel cell (PEMFC)," Applied Energy, Elsevier, vol. 105(C), pages 161-169.
    12. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    13. Liu, Lina & Guo, Lingyi & Zhang, Ruiyuan & Chen, Li & Tao, Wen-Quan, 2021. "Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    14. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    15. Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
    16. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    17. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    18. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    19. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    20. Tingke Fang & Coleman Vairin & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Review of Fuel-Cell Electric Vehicles," Energies, MDPI, vol. 17(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:278-:d:1313663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.