IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3412-d1433228.html
   My bibliography  Save this article

Assessment of Electromagnetic Fields in Trolleybuses and Electric Buses: A Study of Municipal Transport Company Lublin’s Fleet

Author

Listed:
  • Paweł A. Mazurek

    (Department of Electrical Engineering and Smart Technologies, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Aleksander Chudy

    (Department of Electrical Engineering and Smart Technologies, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Piotr Hołyszko

    (Municipal Transport Company Lublin Ltd., Antoniny Grygowej 56, 20-260 Lublin, Poland)

Abstract

As electromobility and especially the electrification of public transportation develops, it is necessary to safeguard human health and minimize environmental impact. Electromagnetic fields generated by the current flowing through on-board batteries, installations, converters, propulsion, air conditioning, heating, lighting, or wireless communication systems in these vehicles may pose risks to drivers and passengers. This research investigates electromagnetic fields induced by extreme low-frequency currents and permanent magnets on electric and trolleybuses implanted in Lublin, Poland. The identification of electromagnetic fields concerned an electric bus model and two trolleybus models. A comparative analysis of the results obtained with the permissible limits in the environment was carried out.

Suggested Citation

  • Paweł A. Mazurek & Aleksander Chudy & Piotr Hołyszko, 2024. "Assessment of Electromagnetic Fields in Trolleybuses and Electric Buses: A Study of Municipal Transport Company Lublin’s Fleet," Energies, MDPI, vol. 17(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3412-:d:1433228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. GyeongAe Seomun & Juneyoung Lee & Jinkyung Park, 2021. "Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    2. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    3. Lei Yang & Meng Lu & Jun Lin & Congsheng Li & Chen Zhang & Zhijing Lai & Tongning Wu, 2019. "Long-Term Monitoring of Extremely Low Frequency Magnetic Fields in Electric Vehicles," IJERPH, MDPI, vol. 16(19), pages 1-9, October.
    4. Peter Gajšek & Paolo Ravazzani & James Grellier & Theodoros Samaras & József Bakos & György Thuróczy, 2016. "Review of Studies Concerning Electromagnetic Field (EMF) Exposure Assessment in Europe: Low Frequency Fields (50 Hz–100 kHz)," IJERPH, MDPI, vol. 13(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    2. Piotr Pryciński & Piotr Pielecha & Jarosław Korzeb & Jacek Pielecha & Mariusz Kostrzewski & Ahmed Eliwa, 2024. "Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-21, October.
    3. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    4. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    5. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    6. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    7. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    8. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    9. Mohammad Junaid & Zsolt Szalay & Árpád Török, 2021. "Evaluation of Non-Classical Decision-Making Methods in Self Driving Cars: Pedestrian Detection Testing on Cluster of Images with Different Luminance Conditions," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Bubelíny Oliver & Ďaďová Irina & Kubina Milan & Soviar Jakub, 2019. "The Use of Smart Elements for the Transport Operation in the Slovak Cities," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 51-60, November.
    11. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2023. "A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland," Energies, MDPI, vol. 16(24), pages 1-22, December.
    12. Janusz Figura & Teresa Gądek-Hawlena, 2022. "The Impact of the COVID-19 Pandemic on the Development of Electromobility in Poland. The Perspective of Companies in the Transport-Shipping-Logistics Sector: A Case Study," Energies, MDPI, vol. 15(4), pages 1-18, February.
    13. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    14. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    16. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    17. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    18. Jozef Gnap & Marek Dočkalik & Ekaterina Salamakhina & Šimon Senko, 2024. "The Issue of Bus Fleet Renewal in Terms of Increasing the Share of Clean Vehicles: A Case Study for Slovakia," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    19. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    20. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3412-:d:1433228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.