IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4656-d1405621.html
   My bibliography  Save this article

The Issue of Bus Fleet Renewal in Terms of Increasing the Share of Clean Vehicles: A Case Study for Slovakia

Author

Listed:
  • Jozef Gnap

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Žilina, 010 26 Zilina, Slovakia)

  • Marek Dočkalik

    (National Motorway Company, a.s., 851 10 Bratislava, Slovakia)

  • Ekaterina Salamakhina

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Žilina, 010 26 Zilina, Slovakia)

  • Šimon Senko

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Žilina, 010 26 Zilina, Slovakia)

Abstract

The renewal of the vehicle fleet with environmentally friendly buses that constitute urban public transport within an urban territory, or a proportion of the transport within the territory of cities and municipalities as part of suburban public passenger transport, can make a significant contribution to reducing greenhouse gas and environmental pollutant emissions from transport. As part of the research, we dealt with the research question as to whether the application of the Act on the Promotion of Clean Vehicles (EU (European Union) Directive 2019/1161) will significantly increase the share of environmentally friendly buses by 2032 in the Slovak Republic (SR). The paradox of the application of the new legislation in the Slovak Republic is that, in public transport, the renewal of the vehicle fleet has significantly reduced, and will further reduce, the negative impacts of vehicle operation, but nothing will change significantly in suburban bus transport while a substantial part of the lines start and end at bus stations in city centres and a number of lines are for short distances, which can be operated by electric buses. Thus, the percentage of environmentally friendly automobiles in the Slovak Republic in urban bus transport will increase significantly. In suburban bus transport, we propose to change the legislation of the Slovak Republic in order to partially start increasing the share of environmentally friendly vehicles. Another follow-up research question was whether gross domestic product (GDP) per capita influences the increased share of environmentally friendly buses in the European countries studied. Based on the correlation measure, there is a significant connection between GDP per capita and the proportion of eco-friendly buses in certain nations. In areas with higher GDP, or in more advanced regions, there is a larger percentage of environmentally sustainable buses. The largest share of environmentally friendly buses is in the Nordic countries of Europe, at 13.44%.

Suggested Citation

  • Jozef Gnap & Marek Dočkalik & Ekaterina Salamakhina & Šimon Senko, 2024. "The Issue of Bus Fleet Renewal in Terms of Increasing the Share of Clean Vehicles: A Case Study for Slovakia," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4656-:d:1405621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    2. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    3. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    5. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    6. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    7. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    8. Pedinotti-Castelle, Marianne & Pineau, Pierre-Olivier & Vaillancourt, Kathleen & Amor, Ben, 2022. "Freight transport modal shifts in a TIMES energy model: Impacts of endogenous and exogenous modeling choice," Applied Energy, Elsevier, vol. 324(C).
    9. Mohammad Junaid & Zsolt Szalay & Árpád Török, 2021. "Evaluation of Non-Classical Decision-Making Methods in Self Driving Cars: Pedestrian Detection Testing on Cluster of Images with Different Luminance Conditions," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Bubelíny Oliver & Ďaďová Irina & Kubina Milan & Soviar Jakub, 2019. "The Use of Smart Elements for the Transport Operation in the Slovak Cities," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 51-60, November.
    11. Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.
    12. García-Afonso, Óscar & González-Díaz, Benjamín, 2023. "Effectiveness of zero tailpipe vehicles to reduce CO2 emissions in isolated power systems, a realistic perspective: Tenerife Island test case," Energy, Elsevier, vol. 273(C).
    13. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2023. "A Study on the Effects of Applying Cargo Delivery Systems to Support Energy Transition in Agglomeration Areas—An Example of the Szczecin Agglomeration, Poland," Energies, MDPI, vol. 16(24), pages 1-22, December.
    14. Janusz Figura & Teresa Gądek-Hawlena, 2022. "The Impact of the COVID-19 Pandemic on the Development of Electromobility in Poland. The Perspective of Companies in the Transport-Shipping-Logistics Sector: A Case Study," Energies, MDPI, vol. 15(4), pages 1-18, February.
    15. Konc, Théo & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "The social multiplier of environmental policy: Application to carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    16. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    17. Katarzyna Kubiak-Wójcicka & Filip Polak & Leszek Szczęch, 2022. "Water Power Plants Possibilities in Powering Electric Cars—Case Study: Poland," Energies, MDPI, vol. 15(4), pages 1-17, February.
    18. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    19. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    20. Teijo Palander & Hanna Haavikko & Emma Kortelainen & Kalle Kärhä, 2020. "Comparison of Energy Efficiency Indicators of Road Transportation for Modeling Environmental Sustainability in “Green” Circular Industry," Sustainability, MDPI, vol. 12(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4656-:d:1405621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.