IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3400-d1432782.html
   My bibliography  Save this article

Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking

Author

Listed:
  • Kai Zhang

    (Guoneng Xinjiang Ganquanbao Comprehensive Energy Co., Ltd., Urumqi 830019, China
    These authors contributed equally to this work.)

  • Xiangxiang Dong

    (School of Automation and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    These authors contributed equally to this work.)

  • Chaofeng Li

    (Guoneng Zhishen Control Technology Co., Ltd., Beijing 102200, China)

  • Yanling Zhao

    (School of Automation and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Kun Liu

    (School of Automation and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

As the main contributor of carbon emissions, the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems, since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper, the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks, and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method, while the economic performance is ensured to some extent. Meanwhile, the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method, while the emissions of the two strategies are same. In addition, long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.

Suggested Citation

  • Kai Zhang & Xiangxiang Dong & Chaofeng Li & Yanling Zhao & Kun Liu, 2024. "Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking," Energies, MDPI, vol. 17(14), pages 1-10, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3400-:d:1432782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    2. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2015. "An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for CO2 separation," Applied Energy, Elsevier, vol. 156(C), pages 423-435.
    3. Dong, Xiangxiang & Wu, Jiang & Xu, Zhanbo & Liu, Kun & Guan, Xiaohong, 2022. "Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage," Applied Energy, Elsevier, vol. 308(C).
    4. Liu, Jinhui & Xu, Zhanbo & Wu, Jiang & Liu, Kun & Guan, Xiaohong, 2021. "Optimal planning of distributed hydrogen-based multi-energy systems," Applied Energy, Elsevier, vol. 281(C).
    5. Staffell, Iain, 2015. "Zero carbon infinite COP heat from fuel cell CHP," Applied Energy, Elsevier, vol. 147(C), pages 373-385.
    6. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    2. Chen, Mengxiao & Cao, Xiaoyu & Zhang, Zitong & Yang, Lun & Ma, Donglai & Li, Miaomiao, 2024. "Risk-averse stochastic scheduling of hydrogen-based flexible loads under 100% renewable energy scenario," Applied Energy, Elsevier, vol. 370(C).
    3. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    4. Huang, Z.F. & Chen, W.D. & Wan, Y.D. & Shao, Y.L. & Islam, M.R. & Chua, K.J., 2024. "Techno-economic comparison of different energy storage configurations for renewable energy combined cooling heating and power system," Applied Energy, Elsevier, vol. 356(C).
    5. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    6. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    7. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    8. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    9. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    10. Johannes Full & Mathias Trauner & Robert Miehe & Alexander Sauer, 2021. "Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential," Energies, MDPI, vol. 14(22), pages 1-22, November.
    11. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    12. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    13. Wu, Yunyun & Lou, Jiahui & Wang, Yihan & Tian, Zhenyu & Yang, Lingzhi & Hao, Yong & Liu, Guohua & Chen, Heng, 2024. "Performance evaluation of a novel photovoltaic-thermochemical and solid oxide fuel cell-based distributed energy system with CO2 capture," Applied Energy, Elsevier, vol. 364(C).
    14. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    15. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    16. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    17. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    18. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    19. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    20. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3400-:d:1432782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.