IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3063-d1419514.html
   My bibliography  Save this article

The Impact of Temperature on the Performance and Reliability of Li/SOCl 2 Batteries

Author

Listed:
  • Yongquan Sun

    (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Xinkun Qin

    (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Lin Li

    (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Youmei Zhang

    (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Jiahai Zhang

    (Yantai Dongfang Wisdom Electric Co., Ltd., Yantai 264000, China)

  • Jia Qi

    (School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)

Abstract

The performance and reliability of lithium thionyl chloride (Li/SOCl 2 ) batteries are significantly affected by temperature, but the reliability level and failure mechanisms of Li/SOCl 2 batteries remain unclear. In this study, Weibull distribution statistics were used to infer the life expectancy of Li/SOCl 2 batteries at different temperatures. Additionally, the battery failure mechanism was analyzed using electrochemical impedance spectroscopy (EIS). It is found that under the discharge condition of 7.5 kΩ load, the mean time between failures (MTBF) and reliable life of the battery decreased with increasing operating temperature. Under the discharge condition of 750 Ω load, the MTBF of the battery peaked at 60 °C. Furthermore, the influence of temperature on the voltage output characteristics of Li/SOCl 2 batteries and the voltage hysteresis were analyzed. Both the battery output voltage and the hysteresis effect increased with rising temperature. This is because high temperature accelerates internal battery reactions, thus altering the formation process of the passivation film on the lithium metal negative electrode.

Suggested Citation

  • Yongquan Sun & Xinkun Qin & Lin Li & Youmei Zhang & Jiahai Zhang & Jia Qi, 2024. "The Impact of Temperature on the Performance and Reliability of Li/SOCl 2 Batteries," Energies, MDPI, vol. 17(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3063-:d:1419514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maosong Fan & Mengmeng Geng & Kai Yang & Mingjie Zhang & Hao Liu, 2023. "State of Health Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Zhaosheng Zhang & Shuo Wang & Ni Lin & Zhenpo Wang & Peng Liu, 2023. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles Based on Regional Capacity and LGBM," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    3. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    2. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    3. Shuhui Cui & Saleem Riaz & Kai Wang, 2023. "Study on Lifetime Decline Prediction of Lithium-Ion Capacitors," Energies, MDPI, vol. 16(22), pages 1-17, November.
    4. Jiakun An & Wei Guo & Tingyan Lv & Ziheng Zhao & Chunguang He & Hongshan Zhao, 2023. "Joint Prediction of the State of Charge and the State of Health of Lithium-Ion Batteries Based on the PSO-XGBoost Algorithm," Energies, MDPI, vol. 16(10), pages 1-14, May.
    5. Wang, Siwei & Xiao, Xinping & Ding, Qi, 2024. "A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery," Energy, Elsevier, vol. 290(C).
    6. Qi, Wei & Qin, Wenhu & Yun, Zhonghua, 2024. "Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter," Energy, Elsevier, vol. 307(C).
    7. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    8. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Gang Zhou & Jianxun Shi & Bingjing Chen & Zhongyi Qi & Licheng Wang, 2023. "Risk Assessment of Power Supply Security Considering Optimal Load Shedding in Extreme Precipitation Scenarios," Energies, MDPI, vol. 16(18), pages 1-17, September.
    10. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    11. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
    12. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    16. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    18. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).
    19. Paweł Ruchała & Olga Orynycz & Wit Stryczniewicz & Karol Tucki, 2023. "Possibility of Energy Recovery from Airflow around an SUV-Class Car Based on Wind Tunnel Testing," Energies, MDPI, vol. 16(19), pages 1-16, October.
    20. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3063-:d:1419514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.