IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3444-d189200.html
   My bibliography  Save this article

Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective Voltage Relaxation Model

Author

Listed:
  • Jie Yang

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Chunyu Du

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Ting Wang

    (Shanghai Institute of Space Power-Sources, Shanghai 200240, China)

  • Yunzhi Gao

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Xinqun Cheng

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Pengjian Zuo

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yulin Ma

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jiajun Wang

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Geping Yin

    (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Jingying Xie

    (Shanghai Institute of Space Power-Sources, Shanghai 200240, China)

  • Bo Lei

    (China Southern Power Grid Co. Ltd., Guangzhou 510623, China)

Abstract

The open circuit voltage of lithium ion batteries in equilibrium state, as a vital thermodynamic characteristic parameter, is extensively studied for battery state estimation and management. However, the time-consuming relaxation process, usually for several hours or more, seriously hinders the widespread application of open circuit voltage. In this paper, a novel voltage relaxation model is proposed to predict the final open circuit voltage when the lithium ion batteries are in equilibrium state with a small amount of sample data in the first few minutes, based on the concentration polarization theory. The Nernst equation is introduced to describe the evolution of relaxation voltage. The accuracy and effectiveness of the model are verified using experimental data on lithium ion batteries with different kinds of electrodes (LiCoO 2 /mesocarbon-microbead and LiFePO 4 /graphite) under different working conditions. The validation results show that the presented model can fit the experimental results very well and the predicted values are quite accurate by taking only 5 min or less. The satisfying results suggest that the introduction of concentration polarization theory might provide researchers an alternative model form to establish voltage relaxation models.

Suggested Citation

  • Jie Yang & Chunyu Du & Ting Wang & Yunzhi Gao & Xinqun Cheng & Pengjian Zuo & Yulin Ma & Jiajun Wang & Geping Yin & Jingying Xie & Bo Lei, 2018. "Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective Voltage Relaxation Model," Energies, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3444-:d:189200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Waag, Wladislaw & Sauer, Dirk Uwe, 2013. "Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination," Applied Energy, Elsevier, vol. 111(C), pages 416-427.
    2. An, Tae-Ho & Choi, Soon-Mok & Kim, Il-Ho & Kim, Sun-Uk & Seo, Won-Seon & Kim, Jong-Young & Park, Chan, 2012. "Thermoelectric properties of a doped Mg2Sn system," Renewable Energy, Elsevier, vol. 42(C), pages 23-27.
    3. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    4. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    5. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    6. Sarasketa-Zabala, E. & Martinez-Laserna, E. & Berecibar, M. & Gandiaga, I. & Rodriguez-Martinez, L.M. & Villarreal, I., 2016. "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, Elsevier, vol. 162(C), pages 839-852.
    7. Zou, Yuan & Li, Shengbo Eben & Shao, Bing & Wang, Baojin, 2016. "State-space model with non-integer order derivatives for lithium-ion battery," Applied Energy, Elsevier, vol. 161(C), pages 330-336.
    8. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Azzam & Moritz Ehrensberger & Reinhard Scheuer & Christian Endisch & Meinert Lewerenz, 2023. "Long-Term Self-Discharge Measurements and Modelling for Various Cell Types and Cell Potentials," Energies, MDPI, vol. 16(9), pages 1-19, May.
    2. Yingjie Chen & Geng Yang & Xu Liu & Zhichao He, 2019. "A Time-Efficient and Accurate Open Circuit Voltage Estimation Method for Lithium-Ion Batteries," Energies, MDPI, vol. 12(9), pages 1-20, May.
    3. Qiaohua Fang & Xuezhe Wei & Tianyi Lu & Haifeng Dai & Jiangong Zhu, 2019. "A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Andrea Ria & Pierpaolo Dini, 2024. "A Compact Overview on Li-Ion Batteries Characteristics and Battery Management Systems Integration for Automotive Applications," Energies, MDPI, vol. 17(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    2. Li, Shi & Pischinger, Stefan & He, Chaoyi & Liang, Liliuyuan & Stapelbroek, Michael, 2018. "A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test," Applied Energy, Elsevier, vol. 212(C), pages 1522-1536.
    3. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    5. Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
    6. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    8. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    10. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    11. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    12. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    13. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.
    14. Guan, Ting & Sun, Shun & Gao, Yunzhi & Du, Chunyu & Zuo, Pengjian & Cui, Yingzhi & Zhang, Lingling & Yin, Geping, 2016. "The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries," Applied Energy, Elsevier, vol. 177(C), pages 1-10.
    15. Xia, Bing & Zhao, Xin & de Callafon, Raymond & Garnier, Hugues & Nguyen, Truong & Mi, Chris, 2016. "Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods," Applied Energy, Elsevier, vol. 179(C), pages 426-436.
    16. Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
    17. Jianqiang Gong & Bin Xu & Fanghua Chen & Gang Zhou, 2025. "Predictive Modeling for Electric Vehicle Battery State of Health: A Comprehensive Literature Review," Energies, MDPI, vol. 18(2), pages 1-37, January.
    18. Kong, Xiangdong & Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhang, Zhendong, 2017. "Signal synchronization for massive data storage in modular battery management system with controller area network," Applied Energy, Elsevier, vol. 197(C), pages 52-62.
    19. Lim, KaiChin & Bastawrous, Hany Ayad & Duong, Van-Huan & See, Khay Wai & Zhang, Peng & Dou, Shi Xue, 2016. "Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles," Applied Energy, Elsevier, vol. 169(C), pages 40-48.
    20. Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhou, Long & Zhang, Zhendong, 2016. "Recording frequency optimization for massive battery data storage in battery management systems," Applied Energy, Elsevier, vol. 183(C), pages 380-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3444-:d:189200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.