IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2910-d1414031.html
   My bibliography  Save this article

The Feasibility of Heat Extraction Using CO 2 in the Carbonate Reservoir in Shandong Province, China

Author

Listed:
  • Xiao Liu

    (Shandong Provincial Lunan Geo-Engineering Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No. 2 Geological Brigade), Jining 272100, China
    Shandong Engineering Research Center of Geothermal Energy Exploration and Development, Jining 272100, China)

  • Feng Zhang

    (Shandong Provincial Lunan Geo-Engineering Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No. 2 Geological Brigade), Jining 272100, China
    Shandong Engineering Research Center of Geothermal Energy Exploration and Development, Jining 272100, China)

  • Shuailiang Song

    (Shandong Provincial Lunan Geo-Engineering Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No. 2 Geological Brigade), Jining 272100, China
    Shandong Engineering Research Center of Geothermal Energy Exploration and Development, Jining 272100, China)

  • Xianfeng Tan

    (Shandong Provincial Lunan Geo-Engineering Exploration Institute (Shandong Provincial Bureau of Geology and Mineral Resources No. 2 Geological Brigade), Jining 272100, China
    Shandong Engineering Research Center of Geothermal Energy Exploration and Development, Jining 272100, China)

  • Guanhong Feng

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)

Abstract

CO 2 is being considered as an effective alternative working fluid for geothermal applications due to its superior fluid dynamics and heat transfer properties compared to water. Utilizing sedimentary rocks for geothermal energy recovery through a CO 2 -plume geothermal system, especially in carbonate reservoirs, has been shown to be a practical approach that eliminates the need for hydraulic fracturing. However, uncertainties remain regarding the thermal and hydraulic behavior, particularly the chemical interactions between CO 2 and carbonate rocks. This study develops a comprehensive wellbore–reservoir coupling reactive transport model based on specific information obtained from the Ordovician limestone geothermal reservoir in Shandong, China. The model aims to assess the feasibility of heat extraction in carbonate reservoirs by evaluating the heat extraction performance and fluid–rock interaction. The results indicate a rapid temperature drop after CO 2 breakthrough due to the Joule–Thomson effect. Simultaneously, the fluid transitions into and maintains a two-phase state throughout the operation. Chemical reactions within the reservoir are not aggressive since complete mixing between unsaturated water and CO 2 only occurs in the vicinity of the production well, highlighting the potential of utilizing carbonate reservoirs for efficient heat extraction in geothermal systems. Further research is needed to optimize the performance of CO 2 -based geothermal systems in carbonate reservoirs.

Suggested Citation

  • Xiao Liu & Feng Zhang & Shuailiang Song & Xianfeng Tan & Guanhong Feng, 2024. "The Feasibility of Heat Extraction Using CO 2 in the Carbonate Reservoir in Shandong Province, China," Energies, MDPI, vol. 17(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2910-:d:1414031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2014. "Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2–EGS)," Energy, Elsevier, vol. 64(C), pages 307-322.
    2. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    3. Cui, Guodong & Ren, Shaoran & Rui, Zhenhua & Ezekiel, Justin & Zhang, Liang & Wang, Hongsheng, 2018. "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system," Applied Energy, Elsevier, vol. 227(C), pages 49-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yerima, Abdulrasheed Ibrahim & Tsegab, Haylay & Hermana, Maman & Piccoli, Leonardo Humberto, 2024. "Integrated modelling of CO2 plume geothermal energy systems in carbonate reservoirs: Technology, operations, economics and sustainability," Renewable Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Caiyun & Ni, Hongjian & Shi, Xian, 2022. "Unsteady model for wellbore pressure transmission of carbon dioxide fracturing considering limited-flow outlet," Energy, Elsevier, vol. 239(PE).
    2. Shu, Biao & Zhu, Runjun & Elsworth, Derek & Dick, Jeffrey & Liu, Shun & Tan, Jingqiang & Zhang, Shaohe, 2020. "Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite," Applied Energy, Elsevier, vol. 272(C).
    3. Cui, Guodong & Pei, Shufeng & Rui, Zhenhua & Dou, Bin & Ning, Fulong & Wang, Jiaqiang, 2021. "Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2," Energy, Elsevier, vol. 217(C).
    4. Wang, Yang & Li, Tuo & Chen, Yun & Ma, Guowei, 2019. "Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks," Energy, Elsevier, vol. 173(C), pages 92-108.
    5. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    6. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    7. Mahmoodpour, Saeed & Singh, Mrityunjay & Bär, Kristian & Sass, Ingo, 2022. "Thermo-hydro-mechanical modeling of an enhanced geothermal system in a fractured reservoir using carbon dioxide as heat transmission fluid- A sensitivity investigation," Energy, Elsevier, vol. 254(PB).
    8. Wang, Yang & Voskov, Denis & Khait, Mark & Bruhn, David, 2020. "An efficient numerical simulator for geothermal simulation: A benchmark study," Applied Energy, Elsevier, vol. 264(C).
    9. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    10. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    11. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    12. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    13. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    14. Chen, Yun & Ma, Guowei & Wang, Huidong & Li, Tuo & Wang, Yang & Sun, Zizheng, 2020. "Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects," Renewable Energy, Elsevier, vol. 148(C), pages 326-337.
    15. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    16. Tomasz Topór & Małgorzata Słota-Valim & Rafał Kudrewicz, 2023. "Assessing the Geothermal Potential of Selected Depleted Oil and Gas Reservoirs Based on Geological Modeling and Machine Learning Tools," Energies, MDPI, vol. 16(13), pages 1-19, July.
    17. Zhang, Lisong & Yang, Qingchun & Jiang, Menggang & Yang, Wendong & Bian, Yinghui, 2024. "A new salt-precipitation-based self-remediation model for CO2 leakage along fault during geological CO2 storage," Energy, Elsevier, vol. 305(C).
    18. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    19. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    20. Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2910-:d:1414031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.