Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.06.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
- Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
- Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
- Gelegenis, John J., 2009. "Use of a probabilistic model to design energy transmission and distribution networks for low enthalpy geothermal multiple use schemes," Applied Energy, Elsevier, vol. 86(3), pages 284-289, March.
- Barkaoui, Alae-Eddine & Boldyryev, Stanislav & Duic, Neven & Krajacic, Goran & Guzović, Zvonimir, 2016. "Appropriate integration of geothermal energy sources by Pinch approach: Case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1343-1349.
- Muñoz, Mauricio & Garat, Pablo & Flores-Aqueveque, Valentina & Vargas, Gabriel & Rebolledo, Sofía & Sepúlveda, Sergio & Daniele, Linda & Morata, Diego & Parada, Miguel Ángel, 2015. "Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5 °S)," Renewable Energy, Elsevier, vol. 76(C), pages 186-195.
- Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
- Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
- Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
- Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
- Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
- Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
- Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
- Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
- Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Watanabe, Noriaki & Saito, Kohei & Okamoto, Atsushi & Nakamura, Kengo & Ishibashi, Takuya & Saishu, Hanae & Komai, Takeshi & Tsuchiya, Noriyoshi, 2020. "Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments," Applied Energy, Elsevier, vol. 260(C).
- Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
- Fan, Huifang & Zhang, Luyi & Wang, Ruifei & Song, Hongqing & Xie, Hui & Du, Li & Sun, Pengguang, 2020. "Investigation on geothermal water reservoir development and utilization with variable temperature regulation: A case study of China," Applied Energy, Elsevier, vol. 275(C).
- Maciej Ławryńczuk, 2018. "Towards Reduced-Order Models of Solid Oxide Fuel Cell," Complexity, Hindawi, vol. 2018, pages 1-18, July.
- Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
- Ziabakhsh-Ganji, Zaman & Nick, Hamidreza M. & Donselaar, Marinus E. & Bruhn, David F., 2018. "Synergy potential for oil and geothermal energy exploitation," Applied Energy, Elsevier, vol. 212(C), pages 1433-1447.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
- Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
- Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
- Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
- Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
- Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
- Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
- Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
- Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
- Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
- Abolfazl Rezaei & Bahador Samadzadegan & Hadise Rasoulian & Saeed Ranjbar & Soroush Samareh Abolhassani & Azin Sanei & Ursula Eicker, 2021. "A New Modeling Approach for Low-Carbon District Energy System Planning," Energies, MDPI, vol. 14(5), pages 1-22, March.
- F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020.
"Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
- F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2018. "Joint and conditional dependence modeling of peak district heating demand and outdoor temperature: a copula-based approach," BEMPS - Bozen Economics & Management Paper Series BEMPS53, Faculty of Economics and Management at the Free University of Bozen.
- Brand, Lisa & Calvén, Alexandra & Englund, Jessica & Landersjö, Henrik & Lauenburg, Patrick, 2014. "Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks," Applied Energy, Elsevier, vol. 129(C), pages 39-48.
- Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
- Henchoz, Samuel & Chatelan, Patrick & Maréchal, François & Favrat, Daniel, 2016. "Key energy and technological aspects of three innovative concepts of district energy networks," Energy, Elsevier, vol. 117(P2), pages 465-477.
- Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
- Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
- Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
- Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
More about this item
Keywords
Model predictive control; Heat network; Direct-use geothermal; Reactive transport; Rotliegend; Low enthalpy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:254-270. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.