IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp92-108.html
   My bibliography  Save this article

Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks

Author

Listed:
  • Wang, Yang
  • Li, Tuo
  • Chen, Yun
  • Ma, Guowei

Abstract

Enhanced geothermal systems using supercritical CO2 (scCO2-EGS) as working fluid in place of water provides better heat extraction rate and sequestrates CO2 in the formations for reducing atmospheric CO2 content and the greenhouse effect. This paper proposed a numerical three-dimensional fully coupled thermo-hydro-mechanical (THM) model to simulate and evaluate the performances of heat mining and geological carbon sequestration in scCO2-EGS embedded in complex discrete fracture networks. The variable thermophysical properties of supercritical CO2 in response to pressure and temperature are taken into account during the reservoir development. Verification, sensitivity analysis, and convergence for the model are accomplished. The three-spot layout of the practical EGS project at Soultz-sous-Forêts is then simulated using a stochastic DNF model under different operation pressures. The efficiencies and quantities of heat mining, carbon sequestration, and production of electric power for a period of 30 years have been studied and discussed. By verification against analytical solutions, the results demonstrate that the current nuermical model is effective to investigate the details of the multi-physical interactions in scCO2-EGS.

Suggested Citation

  • Wang, Yang & Li, Tuo & Chen, Yun & Ma, Guowei, 2019. "Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks," Energy, Elsevier, vol. 173(C), pages 92-108.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:92-108
    DOI: 10.1016/j.energy.2019.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Fangming & Chen, Jiliang & Huang, Wenbo & Luo, Liang, 2014. "A three-dimensional transient model for EGS subsurface thermo-hydraulic process," Energy, Elsevier, vol. 72(C), pages 300-310.
    2. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    3. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    4. Cui, Guodong & Ren, Shaoran & Rui, Zhenhua & Ezekiel, Justin & Zhang, Liang & Wang, Hongsheng, 2018. "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system," Applied Energy, Elsevier, vol. 227(C), pages 49-63.
    5. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2014. "Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2–EGS)," Energy, Elsevier, vol. 64(C), pages 307-322.
    6. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    7. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    8. Hofmann, Hannes & Babadagli, Tayfun & Zimmermann, Günter, 2014. "Hot water generation for oil sands processing from enhanced geothermal systems: Process simulation for different hydraulic fracturing scenarios," Applied Energy, Elsevier, vol. 113(C), pages 524-547.
    9. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    10. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    2. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    3. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    4. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    5. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    6. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & Li, Jiacheng & Geng, Lidong & Li, Xiaojiang, 2019. "Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural fractures," Renewable Energy, Elsevier, vol. 141(C), pages 950-963.
    7. Lin, David T.W. & Hsieh, Jui Ching & Shih, Bo Yen, 2019. "The optimization of geothermal extraction based on supercritical CO2 porous heat transfer model," Renewable Energy, Elsevier, vol. 143(C), pages 1162-1171.
    8. Mahmoodpour, Saeed & Singh, Mrityunjay & Bär, Kristian & Sass, Ingo, 2022. "Thermo-hydro-mechanical modeling of an enhanced geothermal system in a fractured reservoir using carbon dioxide as heat transmission fluid- A sensitivity investigation," Energy, Elsevier, vol. 254(PB).
    9. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    10. Yu, Guojun & Li, Huyu & Liu, Cong & Cheng, Wan & Xu, Huijin, 2023. "Thermal and hydraulic characteristics of a new proposed flyover-crossing fracture configuration for the enhanced geothermal system," Renewable Energy, Elsevier, vol. 211(C), pages 859-873.
    11. Gao, Xiang & Li, Tailu & Meng, Nan & Gao, Haiyang & Li, Xuelong & Gao, Ruizhao & Wang, Zeyu & Wang, Jingyi, 2023. "Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy's law combined with power generation from hot dry rock," Renewable Energy, Elsevier, vol. 206(C), pages 428-440.
    12. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    13. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    14. Liao, Jianxing & Xu, Bin & Mehmood, Faisal & Hu, Ke & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Numerical study of the long-term performance of EGS based on discrete fracture network with consideration of fracture deformation," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    2. Zhixue Sun & Ying Xin & Jun Yao & Kai Zhang & Li Zhuang & Xuchen Zhu & Tong Wang & Chuanyin Jiang, 2018. "Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model," Energies, MDPI, vol. 11(2), pages 1-19, January.
    3. Chen, Yun & Ma, Guowei & Wang, Huidong & Li, Tuo & Wang, Yang & Sun, Zizheng, 2020. "Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects," Renewable Energy, Elsevier, vol. 148(C), pages 326-337.
    4. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    5. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    6. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    7. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    8. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    9. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    10. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    11. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    12. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    13. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    14. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    15. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    16. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    17. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    18. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    19. Fan, Huifang & Zhang, Luyi & Wang, Ruifei & Song, Hongqing & Xie, Hui & Du, Li & Sun, Pengguang, 2020. "Investigation on geothermal water reservoir development and utilization with variable temperature regulation: A case study of China," Applied Energy, Elsevier, vol. 275(C).
    20. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:92-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.