IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2838-d1411561.html
   My bibliography  Save this article

Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques

Author

Listed:
  • Timothy Gordon Walmsley

    (Ahuora—Centre for Smart Energy Systems, School of Engineering, University of Waikato, Hamilton 3240, New Zealand)

  • Benjamin James Lincoln

    (Ahuora—Centre for Smart Energy Systems, School of Engineering, University of Waikato, Hamilton 3240, New Zealand)

  • Roger Padullés

    (Department of Civil and Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby, Denmark)

  • Donald John Cleland

    (School of Food Technology and Natural Sciences, Massey University, Palmerston North 4474, New Zealand)

Abstract

The process integration and electrification concept has significant potential to support the industrial transition to low- and net-zero-carbon process heating. This increasingly essential concept requires an expanded set of process analysis tools to fully comprehend the interplay of heat recovery and process electrification (e.g., heat pumping). In this paper, new Exergy Pinch Analysis tools and methods are proposed that can set lower bound work targets by acutely balancing process heat recovery and heat pumping. As part of the analysis, net energy and exergy load curves enable visualization of energy and exergy surpluses and deficits. As extensions to the grand composite curve in conventional Pinch Analysis, these curves enable examination of different pocket-cutting strategies, revealing their distinct impacts on heat, exergy, and work targets. Demonstrated via case studies on a spray dryer and an evaporator, the exergy analysis targets net shaft-work correctly. In the evaporator case study, the analysis points to the heat recovery pockets playing an essential role in reducing the work target by 25.7%. The findings offer substantial potential for improved industrial energy management, providing a robust framework for engineers to enhance industrial process and energy sustainability.

Suggested Citation

  • Timothy Gordon Walmsley & Benjamin James Lincoln & Roger Padullés & Donald John Cleland, 2024. "Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques," Energies, MDPI, vol. 17(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2838-:d:1411561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    2. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    4. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. François Faraldo & Paul Byrne, 2024. "A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry," Energies, MDPI, vol. 17(12), pages 1-50, June.
    6. Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
    7. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    8. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Liu, Hua & Zhang, Zhiping & Wu, Yongqiang & Yue, Qingxue & Zhang, Ying, 2024. "Film condensation experiments of R1233zd(E) over horizontal tubes and high-temperature condensation predictions for high-temperature heat pump," Energy, Elsevier, vol. 300(C).
    9. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    10. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    11. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    12. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    15. Hao, Yinping & He, Qing & Du, Dongmei, 2020. "A trans-critical carbon dioxide energy storage system with heat pump to recover stored heat of compression," Renewable Energy, Elsevier, vol. 152(C), pages 1099-1108.
    16. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    18. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Oliver Gregor Gorbach & Noha Saad Hussein & Jessica Thomsen, 2021. "Impact of Internal Carbon Prices on the Energy System of an Organisation’s Facilities in Germany, Japan and the United Kingdom Compared to Potential External Carbon Prices," Energies, MDPI, vol. 14(14), pages 1-41, July.
    20. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2838-:d:1411561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.