Analysis of Potential Use of Freezing Boreholes Drilled for an Underground Mine Shaft as Borehole Heat Exchangers for Heat and/or Cooling Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sliwa, Tomasz & Kotyza, Jaroslaw, 2003. "Application of existing wells as ground heat source for heat pumps in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 3-8, January.
- Morstyn, Thomas & Chilcott, Martin & McCulloch, Malcolm D., 2019. "Gravity energy storage with suspended weights for abandoned mine shafts," Applied Energy, Elsevier, vol. 239(C), pages 201-206.
- Eslami-nejad, Parham & Bernier, Michel, 2012. "Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications," Applied Energy, Elsevier, vol. 98(C), pages 333-345.
- Lucija Magdic & Tea Zakula & Luka Boban, 2023. "Improved Analysis of Borehole Heat Exchanger Performance," Energies, MDPI, vol. 16(17), pages 1-18, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
- Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
- Candra Saigustia & Sylwester Robak, 2021. "Review of Potential Energy Storage in Abandoned Mines in Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
- Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.
- Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.
- Igliński, Bartłomiej & Buczkowski, Roman & Kujawski, Wojciech & Cichosz, Marcin & Piechota, Grzegorz, 2012. "Geoenergy in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2545-2557.
- Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
- Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
- Kropotin, P. & Marchuk, I., 2024. "Analytical and quantitative assessment of capital expenditures for construction of an aboveground suspended weight energy storage," Renewable Energy, Elsevier, vol. 220(C).
- Michopoulos, [alpha]. & [Kappa]yriakis, [Nu]., 2009. "Predicting the fluid temperature at the exit of the vertical ground heat exchangers," Applied Energy, Elsevier, vol. 86(10), pages 2065-2070, October.
- Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
- Stefano Morchio & Marco Fossa & Antonella Priarone & Alessia Boccalatte, 2021. "Reduced Scale Experimental Modelling of Distributed Thermal Response Tests for the Estimation of the Ground Thermal Conductivity," Energies, MDPI, vol. 14(21), pages 1-15, October.
- Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
- Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine, 2014. "Modeling of a two-phase CO2-filled vertical borehole for geothermal heat pump applications," Applied Energy, Elsevier, vol. 114(C), pages 611-620.
- Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
- Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
- Simon, F. & Ordoñez, J. & Reddy, T.A. & Girard, A. & Muneer, T., 2016. "Developing multiple regression models from the manufacturer's ground-source heat pump catalogue data," Renewable Energy, Elsevier, vol. 95(C), pages 413-421.
- Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.
- Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
More about this item
Keywords
geothermics; freezing boreholes; mine shafts; geoenergetics; borehole heat exchangers;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2820-:d:1411210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.