IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v74y2003i1-2p3-8.html
   My bibliography  Save this article

Application of existing wells as ground heat source for heat pumps in Poland

Author

Listed:
  • Sliwa, Tomasz
  • Kotyza, Jaroslaw

Abstract

Lots of exploited deep wells in Poland are liquidated after drilling. Employment of these wells for district-heating requires the use of heat pumps for the improvement of the harnessed geothermal heat enthalpy. The Podkarpacie region in the south-eastern part of Poland is where the oil and gas industry was born. There are plenty of old wells (often over 100 years old) drilled by a precursive technique. Due to the depletion of hydrocarbon resources, these wells could be either liquidated, which is expensive, or used as borehole heat-exchangers, which may turn out to be profitable. In the latter case, the captured heat can be sold and liquidation delayed. A preliminary calculation of the energy resource from decommissioned wells in Poland and a simulation of the heat exchange achievable from depleted oil wells are presented in this paper. An economic analysis of systems with heat pumps and deep wells as borehole heat-exchangers follows. Conditions determining the profitability of geothermal heat-pumps in district-heating systems (including heat exchangers) are established. The unit cost of heat is defined, based on the mode of heat utilization. The unit price strongly depends on the operation characteristic of a heat pump and consequently on the parameters of a heating system. The results of the simulation and economic analysis show that the viability of borehole heat-exchangers is only weakly influenced by geological conditions and well parameters, and strongly influenced by the customers and cost of traditional energy carriers. Another important factor is how the heat exchanger is equipped and designed. The matching of wells to heat exchangers affects both the heat exchange during exploitation and the investment costs. Economic profitability is vital for the discussed solution. Among other advantages is the positive environmental aspect of the use of old wells for geothermal-heat harnessing. Moreover, this option creates the possibility of using heat sources locally and achieves partial independence of price trends for traditional fuels. Geothermal energy is often classified as renewable. By using the potential of the many wells across Poland (via heat exchangers), it should be possible to increase the share of the renewables in the energy balance of Poland.

Suggested Citation

  • Sliwa, Tomasz & Kotyza, Jaroslaw, 2003. "Application of existing wells as ground heat source for heat pumps in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 3-8, January.
  • Handle: RePEc:eee:appene:v:74:y:2003:i:1-2:p:3-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00125-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    3. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Tomasz Sliwa & Marek Jaszczur & Jakub Drosik & Mohsen Assadi & Adib Kalantar, 2024. "Analysis of Potential Use of Freezing Boreholes Drilled for an Underground Mine Shaft as Borehole Heat Exchangers for Heat and/or Cooling Applications," Energies, MDPI, vol. 17(12), pages 1-16, June.
    5. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    6. Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
    7. Michopoulos, [alpha]. & [Kappa]yriakis, [Nu]., 2009. "Predicting the fluid temperature at the exit of the vertical ground heat exchangers," Applied Energy, Elsevier, vol. 86(10), pages 2065-2070, October.
    8. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    10. Zimny, Jacek & Michalak, Piotr & Szczotka, Krzysztof, 2015. "Polish heat pump market between 2000 and 2013: European background, current state and development prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 791-812.
    11. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    12. Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.
    13. Simon, F. & Ordoñez, J. & Reddy, T.A. & Girard, A. & Muneer, T., 2016. "Developing multiple regression models from the manufacturer's ground-source heat pump catalogue data," Renewable Energy, Elsevier, vol. 95(C), pages 413-421.
    14. Igliński, Bartłomiej & Buczkowski, Roman & Kujawski, Wojciech & Cichosz, Marcin & Piechota, Grzegorz, 2012. "Geoenergy in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2545-2557.
    15. Jun Liu & Yuping Zhang & Zeyuan Wang & Cong Zhou & Boyang Liu & Fenghao Wang, 2023. "Medium Rock-Soil Temperature Distribution Characteristics at Different Time Scales and New Layout Forms in the Application of Medium-Deep Borehole Heat Exchangers," Energies, MDPI, vol. 16(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:74:y:2003:i:1-2:p:3-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.