IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7742-d682050.html
   My bibliography  Save this article

Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building

Author

Listed:
  • Vilppu Eloranta

    (Faculty of Technology, LAB University of Applied Sciences, Mukkulankatu 19, 15210 Lahti, Finland)

  • Aki Grönman

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Aleksandra Woszczek

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

Abstract

Due to the high energy consumption of buildings, there is a demand for both economically and environmentally effective designs for building energy system retrofits. While multi-objective optimization can be used to solve complicated problems, its use is not yet widespread in the industry. This study first aims to develop an efficient and applicable multi-objective building energy system optimization method, used to dimension energy production and storage retrofit components in a case campus building in Lahti, Finland. Energy consumption data of the building are obtained with a dynamic energy model. The optimization model includes economic and environmental objectives, and the approach is found to function satisfactorily. Second, this study aims to assess the feasibility and issues of multi-objective single-building energy system optimization via the analysis of the case optimization results. The results suggest that economically beneficial local energy production and storage retrofits could not always lead to life cycle CO 2 -eq emission reductions. The recognized causes are high life cycle emissions from the retrofit components and low Nordic grid energy emissions. The performed sensitivity and feasibility analyses show that correctness and methodological comparability of the used emission factors and future assumptions are crucial for reliable optimization results.

Suggested Citation

  • Vilppu Eloranta & Aki Grönman & Aleksandra Woszczek, 2021. "Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building," Energies, MDPI, vol. 14(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7742-:d:682050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    2. Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
    3. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    4. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    5. Liu, Feng & van den Bergh, Jeroen C.J.M., 2020. "Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA," Energy Policy, Elsevier, vol. 138(C).
    6. Antonio Gagliano & Francesco Nocera & Giuseppe Tina, 2020. "Performances and economic analysis of small photovoltaic–electricity energy storage system for residential applications," Energy & Environment, , vol. 31(1), pages 155-175, February.
    7. Johanna Pucker-Singer & Christian Aichberger & Jernej Zupančič & Camilla Neumann & David Neil Bird & Gerfried Jungmeier & Andrej Gubina & Andreas Tuerk, 2021. "Greenhouse Gas Emissions of Stationary Battery Installations in Two Renewable Energy Projects," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    8. Eslami-nejad, Parham & Bernier, Michel, 2012. "Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications," Applied Energy, Elsevier, vol. 98(C), pages 333-345.
    9. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    10. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    11. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    12. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    13. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    14. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    15. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    16. He, Qiong & Hossain, Md. Uzzal & Ng, S. Thomas & Augenbroe, Godfried, 2021. "Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Zhang & Wanjiang Wang & Junkang Song & Zhe Wang & Weiyi Wang, 2022. "Multi-Objective Optimization of Ultra-Low Energy Consumption Buildings in Severely Cold Regions Considering Life Cycle Performance," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    2. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    3. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    4. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
    6. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    7. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    8. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    9. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    10. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    11. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    12. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    13. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    14. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    15. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    16. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    17. Edmund Widl & Benedikt Leitner & Daniele Basciotti & Sawsan Henein & Tarik Ferhatbegovic & René Hofmann, 2020. "Combined Optimal Design and Control of Hybrid Thermal-Electrical Distribution Grids Using Co-Simulation," Energies, MDPI, vol. 13(8), pages 1-21, April.
    18. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    19. Mehrdad Rabani & Habtamu Bayera Madessa & Natasa Nord, 2021. "Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool with CFD and Daylight Programs," Energies, MDPI, vol. 14(8), pages 1-23, April.
    20. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7742-:d:682050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.