IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5615-d1202697.html
   My bibliography  Save this article

The Mine Shaft Energy Storage System—Implementation Threats and Opportunities

Author

Listed:
  • Tomasz Siostrzonek

    (Department of Power Electronics and Automation of Energy Transformation Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

For several years, research work has been carried out on energy storage that uses changes in the potential energy of masses being lifted or lowered. The energy of such a solution depends on the mass to be transported and the height to which the weight has to be lifted. Increasing the weight to be lifted is limited by the parameters of the mechanical components, such as ropes. Increasing the height, however, is difficult to implement, if only because of the weather conditions that affect the safe operation of such a system. In fact, the ideal solution is to use mine shafts, which in Poland are up to 1300 m deep. The progressive process of decommissioning the mining industry creates new opportunities to use this part of the infrastructure of mining plants for the construction of energy storage facilities. In the article, possible constructions of gravitational energy storage facilities based on existing hoisting machines are described. There are three main areas in which the operation of an energy store should be analysed if it were to be realised in a mine shaft. The mine shaft, as a working mine and for energy storage, is subject to relevant regulations that need to be met. To confirm the assumptions about the possible use of the existing infrastructure, measurements of one hoisting machine in Poland were carried out and example results of these measurements are included.

Suggested Citation

  • Tomasz Siostrzonek, 2023. "The Mine Shaft Energy Storage System—Implementation Threats and Opportunities," Energies, MDPI, vol. 16(15), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5615-:d:1202697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    2. Morstyn, Thomas & Chilcott, Martin & McCulloch, Malcolm D., 2019. "Gravity energy storage with suspended weights for abandoned mine shafts," Applied Energy, Elsevier, vol. 239(C), pages 201-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Chmiela & Paweł Wrona & Małgorzata Magdziarczyk & Ronghou Liu & Le Zhang & Adam Smolinski, 2024. "Hydrogen Storage and Combustion for Blackout Protection of Mine Water Pumping Stations," Energies, MDPI, vol. 17(10), pages 1-19, May.
    2. Paweł Wrona & Zenon Różański & Grzegorz Pach & Adam P. Niewiadomski & Małgorzata Markowska & Andrzej Chmiela & Patrick J. Foster, 2023. "Variability of CO 2 , CH 4 , and O 2 Concentration in the Vicinity of a Closed Mining Shaft in the Light of Extreme Weather Events—Numerical Simulations," Energies, MDPI, vol. 16(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    5. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-28, February.
    6. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    7. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    8. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    9. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    10. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    11. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    12. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    14. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    15. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    17. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    18. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    19. Dumont, O. & Lemort, V., 2020. "Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery," Energy, Elsevier, vol. 211(C).
    20. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5615-:d:1202697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.