IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2654-d1405423.html
   My bibliography  Save this article

The Influence of the Mining Operation Environment on the Energy Consumption and Technical Availability of Truck Haulage Operations in Surface Mines

Author

Listed:
  • Przemysław Bodziony

    (Department of Mining Engineering and Work Safety, Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Michał Patyk

    (Department of Mining Engineering and Work Safety, Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Cracow, Poland)

Abstract

This paper presents an analysis of the impact of selected parameters of the operating environment on the energy consumption and reliability of haulage in surface mining. The analysis is based on a cyclic haulage system in a limestone open pit. The results of the calculations show that maintaining the operating environment in good technical condition has a positive effect on the haulage process and a direct or indirect effect on the operating costs, the analysis of which is also presented in the main body of the article. The analysis was carried out for a full year’s production, taking into account actual operating and maintenance downtime. The results of similar analyses can be used as a basis for deciding on the type of truck to be used for transport or for reconfiguring transport routes. In addition to the economic and operational aspects of energy consumption and reliability, the environmental aspect cannot be overlooked. The comparison of two variants of mining conditions shows that a modification of the haul road surface leads to a significant reduction in fuel consumption. Depending on the type of vehicle, fuel consumption can be reduced by almost 20%. The potential reduction in fuel consumption directly translates into lower exhaust emissions, which is an important element of an environmentally sustainable approach to mining transport, and greater reliability increases efficiency and reduces the carbon footprint of the vehicle.

Suggested Citation

  • Przemysław Bodziony & Michał Patyk, 2024. "The Influence of the Mining Operation Environment on the Energy Consumption and Technical Availability of Truck Haulage Operations in Surface Mines," Energies, MDPI, vol. 17(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2654-:d:1405423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siami-Irdemoosa, Elnaz & Dindarloo, Saeid R., 2015. "Prediction of fuel consumption of mining dump trucks: A neural networks approach," Applied Energy, Elsevier, vol. 151(C), pages 77-84.
    2. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    3. Topal, Erkan & Ramazan, Salih, 2010. "A new MIP model for mine equipment scheduling by minimizing maintenance cost," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1065-1071, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Krysa & Przemysław Bodziony & Michał Patyk, 2021. "Discrete Simulations in Analyzing the Effectiveness of Raw Materials Transportation during Extraction of Low-Quality Deposits," Energies, MDPI, vol. 14(18), pages 1-19, September.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    3. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    4. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    5. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    6. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    7. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    8. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    9. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
    10. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    11. Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
    12. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    13. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    14. Nakousi, C. & Pascual, R. & Anani, A. & Kristjanpoller, F. & Lillo, P., 2018. "An asset-management oriented methodology for mine haul-fleet usage scheduling," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 336-344.
    15. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    16. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    17. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    18. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    19. MARK BEBBINGTON & CHIN-DIEW LAI & RIcARDAS ZITIKIS, 2011. "Modelling Deceleration in Senescent Mortality," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(1), pages 18-37.
    20. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2654-:d:1405423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.