IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2602-d1403783.html
   My bibliography  Save this article

Assessing the Potential for Electrification of the Food Industry and Its Implications for Environmental Sustainability

Author

Listed:
  • Yoann Jovet

    (INSA Lyon, CNRS, CETHIL, UMR5008, 69621 Villeurbanne, France)

  • Alexis Laurent

    (Section for Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark)

  • Frédéric Lefevre

    (INSA Lyon, CNRS, CETHIL, UMR5008, 69621 Villeurbanne, France)

  • Marc Clausse

    (INSA Lyon, CNRS, CETHIL, UMR5008, 69621 Villeurbanne, France)

Abstract

Most studies on industrial heat decarbonization by electrification focus on energy and greenhouse gas emissions. However, there are additional potential environmental impacts to be considered to make a fair comparison. The aim of the proposed work is therefore to highlight the benefits and drawbacks of switching to electricity, using life cycle assessment (LCA) methodology to explore more environmental issues. In addition, in order to evaluate the environmental sustainability of this transformation, the LCA results are compared with sustainability thresholds defined with two different methods, on a global scale using the “sustainable levels” concept. The first method is based on the current environmental impacts of industrial processes, while the second considers the economic added value. Industrial heat production levels for the Danish and French food industries are used as case studies. The results show a large number of environmental trade-offs associated with electrification, some of which are leading to unsustainable levels. Sustainability thresholds based on economic added value ensure a fairer distribution between sectors, in particular by preventing the most virtuous sectors and processes from being penalized.

Suggested Citation

  • Yoann Jovet & Alexis Laurent & Frédéric Lefevre & Marc Clausse, 2024. "Assessing the Potential for Electrification of the Food Industry and Its Implications for Environmental Sustainability," Energies, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2602-:d:1403783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    2. Rubio Rodríguez, M.A. & Feitó Cespón, M. & De Ruyck, J. & Ocaña Guevara, V.S. & Verma, V.K., 2013. "Life cycle modeling of energy matrix scenarios, Belgian power and partial heat mixes as case study," Applied Energy, Elsevier, vol. 107(C), pages 329-337.
    3. Dario Giuseppe Urbano & Andrea Aquino & Flavio Scrucca, 2023. "Energy Performance, Environmental Impacts and Costs of a Drying System: Life Cycle Analysis of Conventional and Heat Recovery Scenarios," Energies, MDPI, vol. 16(3), pages 1-12, February.
    4. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    5. Miika P. Marttila & Ville Uusitalo & Lassi Linnanen & Mirja H. Mikkilä, 2021. "Agro-Industrial Symbiosis and Alternative Heating Systems for Decreasing the Global Warming Potential of Greenhouse Production," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    6. Volkart, Kathrin & Weidmann, Nicolas & Bauer, Christian & Hirschberg, Stefan, 2017. "Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland," Energy Policy, Elsevier, vol. 106(C), pages 155-168.
    7. Johan Rockström & Joyeeta Gupta & Dahe Qin & Steven J. Lade & Jesse F. Abrams & Lauren S. Andersen & David I. Armstrong McKay & Xuemei Bai & Govindasamy Bala & Stuart E. Bunn & Daniel Ciobanu & Fabric, 2023. "Safe and just Earth system boundaries," Nature, Nature, vol. 619(7968), pages 102-111, July.
    8. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    3. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    4. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    6. David Firnando Silalahi & Andrew Blakers & Cheng Cheng, 2023. "100% Renewable Electricity in Indonesia," Energies, MDPI, vol. 17(1), pages 1-22, December.
    7. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    8. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    9. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    11. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    13. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    14. Danieli, Piero & Carraro, Gianluca & Volpato, Gabriele & Cin, Enrico Dal & Lazzaretto, Andrea & Masi, Massimo, 2024. "Guidelines for minimum cost transition planning to a 100% renewable multi-regional energy system," Applied Energy, Elsevier, vol. 357(C).
    15. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    17. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    18. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    19. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    20. Hanbin Liu & Yujing Yang & Wenting Jiao & Shaobin Wang & Fangqin Cheng, 2022. "A New Assessment Method for the Redevelopment of Closed Coal Mine—A Case Study in Shanxi Province in China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2602-:d:1403783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.