IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018615.html
   My bibliography  Save this article

Guidelines for minimum cost transition planning to a 100% renewable multi-regional energy system

Author

Listed:
  • Danieli, Piero
  • Carraro, Gianluca
  • Volpato, Gabriele
  • Cin, Enrico Dal
  • Lazzaretto, Andrea
  • Masi, Massimo

Abstract

The paper deals with the energy transition, focusing on the decisions to be taken about the change in the energy conversion capacity of specified portion of the universe, such as industrial or domestic districts, regions, countries, etc. Conversion capacity is intended here as the set of all energy conversion and storage units characterized by type, size and number, and interacting with the natural gas and electricity grids. The goal is to find guidelines for new installations, obtained by simulations of a model able to describe properly the behavior of each energy conversion technology and the interaction with grids. The model is based on a traditional MILNP approach, but contains unique features in the literature, which allow to obtain results of general validity for applications to very different geographical areas, or to countries including very different regions that transmit energy with each other or export/import it from abroad. The main novelty of this work is to identify the best planning for the decarbonisation of energy demand sectors, according to the criterion of minimum cost, both at global and at regional level. The results applied to the case of Italy allow identifying clearly the energy demand sectors to which new installations should be applied first to minimize the cost for the total energy system, and the units that must be foreseen to satisfy these energy demands, i.e. a precise strategy for the energy transition towards a 100% renewable system.

Suggested Citation

  • Danieli, Piero & Carraro, Gianluca & Volpato, Gabriele & Cin, Enrico Dal & Lazzaretto, Andrea & Masi, Massimo, 2024. "Guidelines for minimum cost transition planning to a 100% renewable multi-regional energy system," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018615
    DOI: 10.1016/j.apenergy.2023.122497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.
    2. Sabine Garabedian & Avotra Narindranjanahary & Olivia Ricci & Sandrine Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Post-Print hal-03023346, HAL.
    3. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    4. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.
    5. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    6. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    7. Danieli, Piero & Lazzaretto, Andrea & Al-Zaili, Jafar & Sayma, Abdulnaser & Masi, Massimo & Carraro, Gianluca, 2022. "The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system," Applied Energy, Elsevier, vol. 313(C).
    8. Kannan, Ramachandran, 2011. "The development and application of a temporal MARKAL energy system model using flexible time slicing," Applied Energy, Elsevier, vol. 88(6), pages 2261-2272, June.
    9. Hrnčić, Boris & Pfeifer, Antun & Jurić, Filip & Duić, Neven & Ivanović, Vladan & Vušanović, Igor, 2021. "Different investment dynamics in energy transition towards a 100% renewable energy system," Energy, Elsevier, vol. 237(C).
    10. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
    11. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    12. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Enrico Dal Cin & Gabriele Volpato, 2023. "Is Banning Fossil-Fueled Internal Combustion Engines the First Step in a Realistic Transition to a 100% RES Share?," Energies, MDPI, vol. 16(15), pages 1-18, July.
    13. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Zhong, Jin & Bollen, Math & Rönnberg, Sarah, 2021. "Towards a 100% renewable energy electricity generation system in Sweden," Renewable Energy, Elsevier, vol. 171(C), pages 812-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Piero Danieli & Massimo Masi & Andrea Lazzaretto & Gianluca Carraro & Enrico Dal Cin & Gabriele Volpato, 2023. "Is Banning Fossil-Fueled Internal Combustion Engines the First Step in a Realistic Transition to a 100% RES Share?," Energies, MDPI, vol. 16(15), pages 1-18, July.
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    4. Makhloufi, Saida & Khennas, Smail & Bouchaib, Sami & Arab, Amar Hadj, 2022. "Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria," Renewable Energy, Elsevier, vol. 185(C), pages 1410-1424.
    5. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    7. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    8. Pizzuti, Andrea & Jin, Lingkang & Rossi, Mosè & Marinelli, Fabrizio & Comodi, Gabriele, 2024. "A novel approach for multi-stage investment decisions and dynamic variations in medium-term energy planning for multi-energy carriers community," Applied Energy, Elsevier, vol. 353(PB).
    9. Gorman, Nicholas & MacGill, Iain & Bruce, Anna, 2024. "Re-dispatch simplification analysis: Confirmation holism and assessing the impact of simplifications on energy system model performance," Applied Energy, Elsevier, vol. 365(C).
    10. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    11. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    13. Groppi, Daniele & Feijoo, Felipe & Pfeifer, Antun & Garcia, Davide Astiaso & Duic, Neven, 2023. "Analyzing the impact of demand response and reserves in islands energy planning," Energy, Elsevier, vol. 278(C).
    14. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    15. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    16. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    17. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    18. Johannsen, Rasmus Magni & Prina, Matteo Giacomo & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Sparber, Wolfram, 2023. "Municipal energy system modelling – A practical comparison of optimisation and simulation approaches," Energy, Elsevier, vol. 269(C).
    19. Marrero-Trujillo, Verónica & Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Larsen, Erik R., 2023. "Gamification model for communicating and evaluating renewable energy planning," Utilities Policy, Elsevier, vol. 84(C).
    20. Mier, Mathias & Azarova, Valeriya, 2024. "Investment cost specifications revisited," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.