Agro-Industrial Symbiosis and Alternative Heating Systems for Decreasing the Global Warming Potential of Greenhouse Production
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Min Gyung Yu & Yujin Nam, 2016. "Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
- R. Andrews & J.M. Pearce, 2011. "Environmental and Economic Assessment of a Greenhouse Waste Heat Exchange," Post-Print hal-02120486, HAL.
- Pluimers, J. C. & Kroeze, C. & Bakker, E. J. & Challa, H. & Hordijk, L., 2000. "Quantifying the environmental impact of production in agriculture and horticulture in The Netherlands: which emissions do we need to consider?," Agricultural Systems, Elsevier, vol. 66(3), pages 167-189, December.
- Israel Torres Pineda & Jeong Hwa Cho & Dongkeun Lee & Sang Min Lee & Sangseok Yu & Young Duk Lee, 2020. "Environmental Impact of Fresh Tomato Production in an Urban Rooftop Greenhouse in a Humid Continental Climate in South Korea," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yoann Jovet & Alexis Laurent & Frédéric Lefevre & Marc Clausse, 2024. "Assessing the Potential for Electrification of the Food Industry and Its Implications for Environmental Sustainability," Energies, MDPI, vol. 17(11), pages 1-21, May.
- Jun Taguchi & Hiroki Hondo & Yue Moriizumi, 2024. "Life Cycle CO 2 Emissions Analysis of a High-Tech Greenhouse Horticulture Utilizing Wood Chips for Heating in Japan," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
- Francesco Cepolina & Federico Silenzi & Leonardo Cirillo & Corrado Schenone & Matteo Zoppi, 2023. "Energizing Sustainable Agriculture: Advances in Greenhouse Heating through Microwave-Based Technologies," Energies, MDPI, vol. 16(23), pages 1-19, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vanessa Burg & Farzin Golzar & Gillianne Bowman & Stefanie Hellweg & Ramin Roshandel, 2021. "Symbiosis opportunities between food and energy system: The potential of manure‐based biogas as heating source for greenhouse production," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 648-662, June.
- Donald Coon & Lauren Lindow & Ziynet Boz & Ana Martin-Ryals & Ying Zhang & Melanie Correll, 2024. "Reporting and practices of sustainability in controlled environment agriculture: a scoping review," Environment Systems and Decisions, Springer, vol. 44(2), pages 301-326, June.
- Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
- Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
- Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
- Sukjoon Oh & Juan-Carlos Baltazar & Jeff S. Haberl, 2022. "Assessment of the Impact of Using a Smart Thermostat and Smart Meter Data on a Whole-Building Energy Simulation," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
- Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
- Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
- Joana Almeida & Wouter M.J. Achten & Bruno Verbist & Reindert F. Heuts & Eddie Schrevens & Bart Muys, 2014. "Carbon and Water Footprints and Energy Use of Greenhouse Tomato Production in Northern Italy," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 898-908, December.
- Drottberger, Annie & Zhang, Yizhi & Yong, Jean Wan Hong & Dubois, Marie-Claude, 2023. "Urban farming with rooftop greenhouses: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Moretti, Michele & De Boni, Annalisa & Roma, Rocco & Fracchiolla, Mariano & Van Passel, Steven, 2016. "Integrated assessment of agro-ecological systems: The case study of the “Alta Murgia” National park in Italy," Agricultural Systems, Elsevier, vol. 144(C), pages 144-155.
- Min Gyung Yu & Yujin Nam & Youngdong Yu & Janghoo Seo, 2016. "Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation," Energies, MDPI, vol. 9(4), pages 1-16, April.
- Doorasamy Mishelle, 2016. "The Perceptions of Management on the Benefits of Adopting an Environmental Management Accounting System as a Waste Management Tool," Foundations of Management, Sciendo, vol. 8(1), pages 93-106, January.
- Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
- Engstrom, Rebecka & Wadeskog, Anders & Finnveden, Goran, 2007. "Environmental assessment of Swedish agriculture," Ecological Economics, Elsevier, vol. 60(3), pages 550-563, January.
- Kreiger, M.A. & Shonnard, D.R. & Pearce, J.M., 2013. "Life cycle analysis of silane recycling in amorphous silicon-based solar photovoltaic manufacturing," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 44-49.
More about this item
Keywords
greenhouse production; heating systems; lifecycle assessment; global warming potential; agro-industrial symbiosis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9040-:d:613229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.