IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2424-d1397275.html
   My bibliography  Save this article

Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant

Author

Listed:
  • Sameer Al-Dahidi

    (Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan)

  • Piero Baraldi

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy)

  • Miriam Fresc

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy)

  • Enrico Zio

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy
    MINES-Paris, PSL University, CRC, 06904 Sophia Antipolis, France)

  • Lorenzo Montelatici

    (Research Development and Innovation, Edison Spa, 20121 Milan, Italy)

Abstract

We propose a method for selecting the optimal set of weather features for wind energy prediction. This problem is tackled by developing a wrapper approach that employs binary differential evolution to search for the best feature subset, and an ensemble of artificial neural networks to predict the energy production from a wind plant. The main novelties of the approach are the use of features provided by different weather forecast providers and the use of an ensemble composed of a reduced number of models for the wrapper search. Its effectiveness is verified using weather and energy production data collected from a 34 MW real wind plant. The model is built using the selected optimal subset of weather features and allows for (i) a 1% reduction in the mean absolute error compared with a model that considers all available features and a 4.4% reduction compared with the model currently employed by the plant owners, and (ii) a reduction in the number of selected features by 85% and 50%, respectively. Reducing the number of features boosts the prediction accuracy. The implication of this finding is significant as it allows plant owners to create profitable offers in the energy market and efficiently manage their power unit commitment, maintenance scheduling, and energy storage optimization.

Suggested Citation

  • Sameer Al-Dahidi & Piero Baraldi & Miriam Fresc & Enrico Zio & Lorenzo Montelatici, 2024. "Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant," Energies, MDPI, vol. 17(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2424-:d:1397275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    2. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    3. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
    4. Abualkasim Bakeer & Gaber Magdy & Andrii Chub & Francisco Jurado & Mahmoud Rihan, 2022. "Optimal Ultra-Local Model Control Integrated with Load Frequency Control of Renewable Energy Sources Based Microgrids," Energies, MDPI, vol. 15(23), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    2. Weijun Wang & Dan Zhao & Liguo Fan & Yulong Jia, 2019. "Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine," Energies, MDPI, vol. 12(11), pages 1-21, June.
    3. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    4. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    5. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    6. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    7. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    8. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    9. Kirchner-Bossi, N. & Prieto, L. & García-Herrera, R. & Carro-Calvo, L. & Salcedo-Sanz, S., 2013. "Multi-decadal variability in a centennial reconstruction of daily wind," Applied Energy, Elsevier, vol. 105(C), pages 30-46.
    10. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    11. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    12. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    13. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    14. Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    15. Ying-Yi Hong & Ti-Hsuan Yu & Ching-Yun Liu, 2013. "Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition," Energies, MDPI, vol. 6(12), pages 1-16, November.
    16. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    19. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    20. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2424-:d:1397275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.