IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9177-d992594.html
   My bibliography  Save this article

Optimal Ultra-Local Model Control Integrated with Load Frequency Control of Renewable Energy Sources Based Microgrids

Author

Listed:
  • Abualkasim Bakeer

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Gaber Magdy

    (Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt
    Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Andrii Chub

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Francisco Jurado

    (Department of Electrical Engineering, University of Jaén, 23700 Linares, Spain)

  • Mahmoud Rihan

    (Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83521, Egypt)

Abstract

Since renewable energy sources (RESs) have an intermittent nature, conventional secondary frequency control, i.e., load frequency control (LFC), cannot mitigate the effects of variations in system frequency. Thus, this paper proposes incorporating ultralocal model (ULM) control into LFC to enhance microgrid (µG) frequency stability. ULM controllers are regarded as model-free controllers that yield high rejection rates for disturbances caused by load/RES uncertainties. Typically, ULM parameters are set using trial-and-error methods, which makes it difficult to determine the optimal values that will provide the best system performance and stability. To address this issue, the African vultures optimization algorithm (AVOA) was applied to fine-tune the ULM parameters, thereby stabilizing the system frequency despite different disturbances. The proposed LFC controller was compared with the traditional secondary controller based on an integral controller to prove its superior performance. For several contingencies, the simulation results demonstrated that the proposed controller based on the optimal ULM coupled with LFC could significantly promote RESs into the µG.

Suggested Citation

  • Abualkasim Bakeer & Gaber Magdy & Andrii Chub & Francisco Jurado & Mahmoud Rihan, 2022. "Optimal Ultra-Local Model Control Integrated with Load Frequency Control of Renewable Energy Sources Based Microgrids," Energies, MDPI, vol. 15(23), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9177-:d:992594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud Rihan & Mahmoud Nasrallah & Barkat Hasanin & Adel El-Shahat, 2022. "A Proposed Controllable Crowbar for a Brushless Doubly-Fed Reluctance Generator, a Grid-Integrated Wind Turbine," Energies, MDPI, vol. 15(11), pages 1-29, May.
    2. Gaber Magdy & Abualkasim Bakeer & Morsy Nour & Eduard Petlenkov, 2020. "A New Virtual Synchronous Generator Design Based on the SMES System for Frequency Stability of Low-Inertia Power Grids," Energies, MDPI, vol. 13(21), pages 1-17, October.
    3. Ghazi A. Ghazi & Hany M. Hasanien & Essam A. Al-Ammar & Rania A. Turky & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi, 2022. "African Vulture Optimization Algorithm-Based PI Controllers for Performance Enhancement of Hybrid Renewable-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    2. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    3. Sameer Al-Dahidi & Piero Baraldi & Miriam Fresc & Enrico Zio & Lorenzo Montelatici, 2024. "Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant," Energies, MDPI, vol. 17(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Solomon Feleke & Balamurali Pydi & Raavi Satish & Hossam Kotb & Mohammed Alenezi & Mokhtar Shouran, 2023. "Frequency Stability Enhancement Using Differential-Evolution- and Genetic-Algorithm-Optimized Intelligent Controllers in Multiple Virtual Synchronous Machine Systems," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    3. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    4. Hassan, Qusay & Khadom, Anees A. & Algburi, Sameer & Al-Jiboory, Ali Khudhair & Sameen, Aws Zuhair & Alkhafaji, Mohamed Ayad & Mahmoud, Haitham A. & Awwad, Emad Mahrous & Mahood, Hameed B. & Kazem, Hu, 2024. "Implications of a smart grid-integrated renewable distributed generation capacity expansion strategy: The case of Iraq," Renewable Energy, Elsevier, vol. 221(C).
    5. Vjatseslav Skiparev & Ram Machlev & Nilanjan Roy Chowdhury & Yoash Levron & Eduard Petlenkov & Juri Belikov, 2021. "Virtual Inertia Control Methods in Islanded Microgrids," Energies, MDPI, vol. 14(6), pages 1-20, March.
    6. Kumeshan Reddy & Akshay Kumar Saha, 2022. "A Heuristic Approach to Optimal Crowbar Setting and Low Voltage Ride through of a Doubly Fed Induction Generator," Energies, MDPI, vol. 15(24), pages 1-36, December.
    7. Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    8. Yun Zeng & Jing Qian & Fengrong Yu & Hong Mei & Shige Yu, 2021. "Damping Formation Mechanism and Damping Injection of Virtual Synchronous Generator Based on Generalized Hamiltonian Theory," Energies, MDPI, vol. 14(21), pages 1-14, October.
    9. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Md. Shafiul Alam & Abdullah A. Almehizia & Fahad Saleh Al-Ismail & Md. Alamgir Hossain & Muhammad Azharul Islam & Md. Shafiullah & Aasim Ullah, 2022. "Frequency Stabilization of AC Microgrid Clusters: An Efficient Fractional Order Supercapacitor Controller Approach," Energies, MDPI, vol. 15(14), pages 1-22, July.
    11. Isaac Amoussou & Emmanuel Tanyi & Lajmi Fatma & Takele Ferede Agajie & Ilyes Boulkaibet & Nadhira Khezami & Ahmed Ali & Baseem Khan, 2023. "The Optimal Design of a Hybrid Solar PV/Wind/Hydrogen/Lithium Battery for the Replacement of a Heavy Fuel Oil Thermal Power Plant," Sustainability, MDPI, vol. 15(15), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9177-:d:992594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.