Combined approach using mathematical modelling and artificial neural network for chemical industries: Steam methane reformer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113809
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
- Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
- Zofia Pizoń & Shinji Kimijima & Grzegorz Brus, 2024. "Enhancing a Deep Learning Model for the Steam Reforming Process Using Data Augmentation Techniques," Energies, MDPI, vol. 17(10), pages 1-15, May.
- Konrad Gac & Grzegorz Góra & Maciej Petko & Joanna Iwaniec & Adam Martowicz & Artur Kowalski, 2023. "Modelling of Automated Store Energy Consumption," Energies, MDPI, vol. 16(24), pages 1-23, December.
- Zhang, Chao & Shen, Yuanhui & Zhang, Donghui & Tang, Zhongli & Li, Wenbin, 2022. "Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC," Energy, Elsevier, vol. 257(C).
- Zhang, Zhiwei & Vo, Dat-Nguyen & Nguyen, Tuan B.H. & Sun, Jinsheng & Lee, Chang-Ha, 2024. "Advanced process integration and machine learning-based optimization to enhance techno-economic-environmental performance of CO2 capture and conversion to methanol," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
Steam methane reforming; Multiscale modelling; Dynamic simulation; Artificial neural network; Stochastic simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.