Author
Listed:
- Vo, Dat-Nguyen
- Qi, Meng
- Lee, Chang-Ha
- Yin, Xunyuan
Abstract
The Power-to-methanol (PtMe) process faces significant challenges, including high production costs, low energy efficiency, and a lack of systematic and applicable integrated design and superstructure optimization methods. This study proposes advanced integration and machine learning (ML)-based superstructure optimization approaches that aim to enhance the performance of the PtMe process. Alkaline water electrolyzer (AWE), polymer electrolyte membrane electrolyzer (PEM), and solid oxide electrolyzer (SOE) are chosen for investigation due to their high technology readiness levels. The validated mathematical models for these electrolyzers are integrated with other units to form 3 conventional and 12 advanced designs. The conventional designs comprise electrolyzer-based H2 and CO2-to-methanol sections. In contrast, the advanced designs integrate these sections with four waste-utility reutilization strategies, including heat (H), heat and steam (HS), heat and power (HP), and heat, steam, and power (HSP) generations. A techno-economic analysis demonstrates the pivotal role of electrolyzers in the PtMe process. Two deep neural networks (DNN) models are developed to represent the superstructure design of the PtMe process. With marginal training and test errors (0.28% and 1.03%), the one-hot vector-DNN (OHV-DNN) model is selected to formulate four optimization problems, identifying the PtMe-SOE-HSP and PtMe-AWE-HSP designs as optimal solutions for minimizing energy consumption and production cost considering carbon tax. The PtMe-AWE and PtMe-SOE designs are the best candidates among the conventional designs. Compared to the optimal conventional designs, the optimal advanced designs improve the techno-economic-environmental performance by 1.8–29.7%. Additionally, compared to the PtMe-AWE-HSP design, the PtMe-SOE-HSP design achieves a 4.3% reduction in net CO2 reduction and a 10.2% reduction in energy consumption. Then, an economic analysis reveals the PtMe-SOE-HSP design as the superior design under scenarios of reduced electrolyzer CAPEX and increased electrolyzer lifetime. These findings are valuable for improving the techno-economic-environmental performance of the PtMe process. Moreover, the proposed integration strategies and ML-based superstructure optimization approach hold the promise for enhancing other power-to-liquid processes.
Suggested Citation
Vo, Dat-Nguyen & Qi, Meng & Lee, Chang-Ha & Yin, Xunyuan, 2025.
"Advanced integration strategies and machine learning-based superstructure optimization for Power-to-Methanol,"
Applied Energy, Elsevier, vol. 378(PA).
Handle:
RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021147
DOI: 10.1016/j.apenergy.2024.124731
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.