IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7046-d1257756.html
   My bibliography  Save this article

The Potential of Chemically Recuperated Power Cycles in Markets with High Shares of Variable Renewables

Author

Listed:
  • Carlos Arnaiz del Pozo

    (Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain)

  • Ángel Jiménez Álvaro

    (Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain)

  • Schalk Cloete

    (Process Technology Department, SINTEF Industry, NO-7465 Trondheim, Norway)

  • Jose Antonio García del Pozo Martín de Hijas

    (Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain)

Abstract

Rising shares of variable wind and solar generation in decarbonized electricity systems motivate the development of novel power cycles employing unconventional fuels. Innovative designs must be highly flexible and profitable at low capacity factors, requiring a simple process layout and low capital costs. Fuel supply infrastructure represents a significant additional capital cost, which is often ignored in economic assessments of gas-fired power plants. When these capital costs are included, liquid fuels such as NH 3 or MeOH gain relevance despite their high production costs because they are cheap to store and distribute. In addition, chemically recuperated power cycle designs upgrade these fuels with waste heat from the gas turbine exhaust, avoiding a capital-intensive bottoming cycle while achieving high thermal efficiencies. This work presents an exergoeconomic benchmarking of different large-scale power plants and their fuel supply infrastructure. The results show that chemically recuperated cycles using MeOH become competitive relative to natural-gas-fired combined cycles with fuel storage in salt caverns at capacity factors below 32% if seven-day storage is required and plants are located 500 km from the fuel source. NH 3 can compete with H 2 at a higher capacity factor of 47% because of the high cost of storing H 2 , while a CO 2 price of 140 EUR/ton is required for NH 3 to outperform MeOH as a fuel. In cases where salt cavern storage is unavailable, or the energy security of multi-week fuel storage is highly valued, liquid fuels present a clearly superior solution.

Suggested Citation

  • Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Schalk Cloete & Jose Antonio García del Pozo Martín de Hijas, 2023. "The Potential of Chemically Recuperated Power Cycles in Markets with High Shares of Variable Renewables," Energies, MDPI, vol. 16(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7046-:d:1257756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    2. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    3. Cloete, Schalk & Arnaiz del Pozo, Carlos & Jiménez Álvaro, Ángel, 2022. "System-friendly process design: Optimizing blue hydrogen production for future energy systems," Energy, Elsevier, vol. 259(C).
    4. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    5. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Zhao, Hongbin & Yue, Pengxiu, 2011. "Performance analysis of humid air turbine cycle with solar energy for methanol decomposition," Energy, Elsevier, vol. 36(5), pages 2372-2380.
    7. Cesaro, Zac & Ives, Matthew & Nayak-Luke, Richard & Mason, Mike & Bañares-Alcántara, René, 2021. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants," Applied Energy, Elsevier, vol. 282(PA).
    8. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    9. Christoph Loschan & Daniel Schwabeneder & Matthias Maldet & Georg Lettner & Hans Auer, 2023. "Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market," Energies, MDPI, vol. 16(14), pages 1-35, July.
    10. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Arnaiz del Pozo & Susana Sánchez-Orgaz & Alberto Navarro-Calvo & Ángel Jiménez Álvaro & Schalk Cloete, 2024. "Integration of Chemical Looping Combustion in the Graz Power Cycle," Energies, MDPI, vol. 17(10), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    3. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    4. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Ives, Matthew & Cesaro, Zac & Bramstoft, Rasmus & Bañares-Alcántara, René, 2023. "Facilitating deep decarbonization via sector coupling of green hydrogen and ammonia," INET Oxford Working Papers 2023-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    6. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    7. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    8. Yue, Ting & Lior, Noam, 2017. "Exergo economic analysis of solar-assisted hybrid power generation systems integrated with thermochemical fuel conversion," Applied Energy, Elsevier, vol. 191(C), pages 204-222.
    9. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    10. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    11. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    13. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    14. Andrea J. Boero & Kevin Kardux & Marina Kovaleva & Daniel A. Salas & Jacco Mooijer & Syed Mashruk & Michael Townsend & Kevin Rouwenhorst & Agustin Valera-Medina & Angel D. Ramirez, 2021. "Environmental Life Cycle Assessment of Ammonia-Based Electricity," Energies, MDPI, vol. 14(20), pages 1-20, October.
    15. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    16. Georgi Todorov & Ivan Kralov & Ivailo Koprev & Hristo Vasilev & Iliyana Naydenova, 2024. "Coal Share Reduction Options for Power Generation during the Energy Transition: A Bulgarian Perspective," Energies, MDPI, vol. 17(4), pages 1-25, February.
    17. Ngoc Van Trinh & Younghyeon Kim & Hongjip Kim & Sangseok Yu, 2021. "Evaporation of Methanol Solution for a Methanol Steam Reforming System," Energies, MDPI, vol. 14(16), pages 1-15, August.
    18. Kanaan, Riham & Affonso Nóbrega, Pedro Henrique & Achard, Patrick & Beauger, Christian, 2023. "Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Bataineh, Khaled, 2024. "Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review," Energy, Elsevier, vol. 300(C).
    20. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7046-:d:1257756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.