IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp288-294.html
   My bibliography  Save this article

Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier

Author

Listed:
  • Ströhle, Jochen
  • Orth, Matthias
  • Epple, Bernd

Abstract

The application of chemical looping combustion (CLC) for capturing CO2 from coal-fired power plants has the potential of very low efficiency penalty and low CO2 avoidance costs compared with first generation CO2 capture technologies. One important step towards commercial application is the demonstration of the technology in autothermal operation in the scale of 1MWth fuel power. This study presents results of a test campaign in a 1MWth CLC plant with hard coal as fuel and ilmenite as oxygen carrier. The results of a six hours period with two hours of constant coal feeding of 0.5MWth are studied in detail. The fuel reactor was fluidized with steam and CO2, and the start-up propane burner was still in operation at minimum load. The overall air ratio in the fuel reactor was around 0.1. This indicates that the solids circulation was slightly too low to keep the fuel reactor temperature at 900°C. The measured gas concentrations at the fuel reactor exit show that it was possible to gasify coal and to convert the main part of the gasification products by the ilmenite. The oxygen demand was around 20%, which is in line with the experience from the Chalmers 100kWth test rig. The air reactor had to be heated by additional combustion of propane, most probably because the inventory of the air reactor was very low leading to low conversion rates of ilmenite. Hence, autothermal operation was not reached. Improved results can be expected by an increase of the solids inventory in the reactors and by an increase of solids circulation.

Suggested Citation

  • Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2015. "Chemical looping combustion of hard coal in a 1MWth pilot plant using ilmenite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 288-294.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:288-294
    DOI: 10.1016/j.apenergy.2015.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500793X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    2. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2014. "Design and operation of a 1MWth chemical looping plant," Applied Energy, Elsevier, vol. 113(C), pages 1490-1495.
    3. Ohlemüller, Peter & Alobaid, Falah & Gunnarsson, Adrian & Ströhle, Jochen & Epple, Bernd, 2015. "Development of a process model for coal chemical looping combustion and validation against 100kWth tests," Applied Energy, Elsevier, vol. 157(C), pages 433-448.
    4. Markström, Pontus & Linderholm, Carl & Lyngfelt, Anders, 2014. "Operation of a 100kW chemical-looping combustor with Mexican petroleum coke and Cerrejón coal," Applied Energy, Elsevier, vol. 113(C), pages 1830-1835.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    2. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    3. Ma, Jinchen & Zhao, Haibo & Tian, Xin & Wei, Yijie & Rajendran, Sharmen & Zhang, Yongliang & Bhattacharya, Sankar & Zheng, Chuguang, 2015. "Chemical looping combustion of coal in a 5kWth interconnected fluidized bed reactor using hematite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 304-313.
    4. Schnellmann, Matthias A. & Donat, Felix & Scott, Stuart A. & Williams, Gareth & Dennis, John S., 2018. "The effect of different particle residence time distributions on the chemical looping combustion process," Applied Energy, Elsevier, vol. 216(C), pages 358-366.
    5. Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
    6. Knutsson, Pavleta & Linderholm, Carl, 2015. "Characterization of ilmenite used as oxygen carrier in a 100kW chemical-looping combustor for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 368-373.
    7. Berdugo Vilches, Teresa & Lind, Fredrik & Rydén, Magnus & Thunman, Henrik, 2017. "Experience of more than 1000h of operation with oxygen carriers and solid biomass at large scale," Applied Energy, Elsevier, vol. 190(C), pages 1174-1183.
    8. Falko Marx & Paul Dieringer & Jochen Ströhle & Bernd Epple, 2021. "Design of a 1 MW th Pilot Plant for Chemical Looping Gasification of Biogenic Residues," Energies, MDPI, vol. 14(9), pages 1-25, April.
    9. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    10. Alobaid, Falah & Ohlemüller, Peter & Ströhle, Jochen & Epple, Bernd, 2015. "Extended Euler–Euler model for the simulation of a 1 MWth chemical–looping pilot plant," Energy, Elsevier, vol. 93(P2), pages 2395-2405.
    11. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    12. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
    13. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    14. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    15. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    16. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.
    17. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    18. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    20. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:288-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.