IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2269-d1390590.html
   My bibliography  Save this article

Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries

Author

Listed:
  • Francesco Conte

    (Department of Engineering, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy)

  • Marco Giallongo

    (Yanmar R&D Europe SRL, Viale Galileo 3/A, 50125 Firenze, Italy)

  • Daniele Kaza

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Gianluca Natrella

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Ryohei Tachibana

    (Yanmar Holdings Co., Ltd., 2481 Umegahara, Maibara 5218511, Shiga, Japan)

  • Shinji Tsuji

    (Yanmar Holdings Co., Ltd., 2481 Umegahara, Maibara 5218511, Shiga, Japan)

  • Federico Silvestro

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, Università degli Studi di Genova, Via all’Opera Pia 11a, 16145 Genova, Italy)

  • Giovanni Vichi

    (Yanmar R&D Europe SRL, Viale Galileo 3/A, 50125 Firenze, Italy)

Abstract

Modeling and predicting the long-term performance of Li-ion batteries is crucial for the effective design and efficient operation of integrated energy systems. In this paper, we introduce a comprehensive semi-empirical model for Li-ion cells, capturing electrothermal and aging features. This model replicates the evolution of cell voltage, capacity, and internal resistance, in relation to the cell actual operating conditions, and estimates the ongoing degradation in capacity and internal resistance due to the battery use. Thus, the model articulates into two sub-models, an electrothermal one, describing the battery voltage, and an aging one, computing the ongoing degradation. We first propose an approach to identify the parameters of both sub-models. Then, we validate the identification procedure and the accuracy of the electrothermal and aging models through an experimental campaign, also comprising two real cycle load tests at different temperatures, in which real measurements collected from real Li-ion cells are used. The overall model demonstrates good performances in simulating battery characteristics and forecasting degradation. The results show a Mean Absolute Percentage Error (MAPE) lower than 1% for battery voltage and capacity, and a maximum absolute error on internal resistance that is on par with the most up-to-date empirical models. The proposed approach is therefore well-suited for implementation in system modeling, and can be employed as an informative tool for enhancing battery design and operational strategies.

Suggested Citation

  • Francesco Conte & Marco Giallongo & Daniele Kaza & Gianluca Natrella & Ryohei Tachibana & Shinji Tsuji & Federico Silvestro & Giovanni Vichi, 2024. "Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries," Energies, MDPI, vol. 17(10), pages 1-30, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2269-:d:1390590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    2. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    2. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
    3. Andrzej P. Nowak & Paweł Rutecki & Mariusz Szkoda & Konrad Trzciński, 2024. "Determination of Sodium Ion Diffusion Coefficient in Tin Sulfide@Carbon Anode Material Using GITT and EIS Techniques," Energies, MDPI, vol. 17(13), pages 1-11, July.
    4. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    5. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    6. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    7. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    8. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    9. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
    10. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    11. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    12. Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
    13. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    14. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    15. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    16. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    17. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    18. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    19. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2269-:d:1390590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.