IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p2-d1302841.html
   My bibliography  Save this article

A Review on Quantitative Energy Consumption Models from Road Transportation

Author

Listed:
  • Yanyan Chen

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Siyang Li

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yanan Li

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

With the objectives of achieving “peak carbon” and “carbon neutrality”, accurately quantifying the carbon emissions of road transportation becomes crucial. It is challenging to accurately describe the energy consumption of vehicles at both temporal and spatial scales from a macro perspective. Therefore, focusing on the quantitative model of vehicle micro energy consumption and road meso energy consumption, this paper reviewed and summarized the energy consumption model of road traffic in terms of data collection, quantification accuracy, and scope of application. Based on this analysis, this paper identifies the challenges of the current road traffic energy consumption model. Finally, we look forward to future research directions for studying quantitative models of energy consumption from road transportation.

Suggested Citation

  • Yanyan Chen & Siyang Li & Yanan Li, 2023. "A Review on Quantitative Energy Consumption Models from Road Transportation," Energies, MDPI, vol. 17(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:2-:d:1302841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akcelik, Rahmi, 1989. "Efficiency and drag in the power-based model of fuel consumption," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 376-385, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xiaoyu & Zhang, Jian & Jiang, Xia & Chen, Juan & Hao, Wei & Wang, Bo, 2024. "Learning eco-driving strategies from human driving trajectories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Huifu Jiang & Jia Hu & Byungkyu Brian Park & Meng Wang & Wei Zhou, 2019. "An Extensive Investigation of an Eco-Approach Controller under a Partially Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    4. Li, Yun & Zhang, Wenshan & Zhang, Shengrui & Pan, Yingjiu & Zhou, Bei & Jiao, Shuaiyang & Wang, Jianpo, 2024. "An improved eco-driving strategy for mixed platoons of autonomous and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    5. Chen Wang & Yulu Dai & Jingxin Xia, 2020. "A CAV Platoon Control Method for Isolated Intersections: Guaranteed Feasible Multi-Objective Approach with Priority," Energies, MDPI, vol. 13(3), pages 1-16, February.
    6. Gennaro Nicola Bifulco & Francesco Galante & Luigi Pariota & Maria Russo Spena, 2015. "A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems," Sustainability, MDPI, vol. 7(10), pages 1-18, October.
    7. Qin, Yanyan & Xiao, Tengfei & Wang, Hua, 2024. "Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather," Energy, Elsevier, vol. 296(C).
    8. Huifu Jiang & Wei Zhou & Chang Liu & Guosheng Zhang & Meng Hu, 2020. "Safe and Ecological Speed Control for Heavy-Duty Vehicles on Long–Steep Downhill and Sharp-Curved Roads," Sustainability, MDPI, vol. 12(17), pages 1-35, August.
    9. Wan, Changxin & Shan, Xiaonian & Hao, Peng & Wu, Guoyuan, 2024. "Multi-objective coordinated control strategy for mixed traffic with partially connected and automated vehicles in urban corridors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    10. Huifu Jiang & Shi An & Jian Wang & Jianxun Cui, 2018. "Eco-Approach and Departure System for Left-Turn Vehicles at a Fixed-Time Signalized Intersection," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    11. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:2-:d:1302841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.