IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3780-d1135550.html
   My bibliography  Save this article

Technical Analysis of the Large Capacity Grid-Connected Floating Photovoltaic System on the Hydropower Reservoir

Author

Listed:
  • Nghia-Hieu Nguyen

    (Faculty of Heat & Refrigeration Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh 71408, Vietnam)

  • Bao-Chi Le

    (Department of Heat & Refrigeration Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh 72506, Vietnam)

  • Le-Ngoc Nguyen

    (Faculty of Information Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 71408, Vietnam)

  • Thanh-Trung Bui

    (Faculty of Heat & Refrigeration Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh 71408, Vietnam)

Abstract

Among the energy targets of the Vietnamese government, solar energy is expected to become the main source of renewable energy in the future. Solar energy is moving forward, with Vietnam outstripping Thailand and becoming the country that installed the largest capacity of solar power generation in Southeast Asia, reaching 16,362 MW in new installations in December 2021. In this study, we have experimentally analyzed and designed a capacity of 47.5 MW grid-connected photovoltaic plant mounted on the floatation system at Da Mi hydropower reservoir in Binh Thuan province. This was selected to be utilized as the first effort to develop the first large-capacity floating solar power plant on a hydroelectric reservoir in Vietnam. A detailed examination of the electrical analysis, including DC to DC converters, AC inverters to the transmission network, and PV module connectivity configurations, are in scope. The present research has the potential to make a contribution to the design of the DC electrical part, the AC electrical part, and the layout PV modules—Inverter—Floatation system—Floating bridge of FPV plants which are less described in the former articles. The performance of the plant after the first 2 years of operation has confirmed that it has met the expectations and exceeded the investor’s target, with the power output of the first 2 years being higher than the design by 102.58% to 105.59% and no serious damage has occurred to the equipment from 1 June 2019 to 31 August 2021.

Suggested Citation

  • Nghia-Hieu Nguyen & Bao-Chi Le & Le-Ngoc Nguyen & Thanh-Trung Bui, 2023. "Technical Analysis of the Large Capacity Grid-Connected Floating Photovoltaic System on the Hydropower Reservoir," Energies, MDPI, vol. 16(9), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3780-:d:1135550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    2. Ferrer-Gisbert, Carlos & Ferrán-Gozálvez, José J. & Redón-Santafé, Miguel & Ferrer-Gisbert, Pablo & Sánchez-Romero, Francisco J. & Torregrosa-Soler, Juan Bautista, 2013. "A new photovoltaic floating cover system for water reservoirs," Renewable Energy, Elsevier, vol. 60(C), pages 63-70.
    3. Labed, S. & Lorenzo, E., 2004. "The impact of solar radiation variability and data discrepancies on the design of PV systems," Renewable Energy, Elsevier, vol. 29(7), pages 1007-1022.
    4. Adimas Pradityo Sukarso & Kyung Nam Kim, 2020. "Cooling Effect on the Floating Solar PV: Performance and Economic Analysis on the Case of West Java Province in Indonesia," Energies, MDPI, vol. 13(9), pages 1-16, April.
    5. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    6. Trapani, Kim & Millar, Dean L., 2014. "The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype," Renewable Energy, Elsevier, vol. 71(C), pages 43-50.
    7. Stiubiener, Uri & Carneiro da Silva, Thadeu & Trigoso, Federico Bernardino Morante & Benedito, Ricardo da Silva & Teixeira, Julio Carlos, 2020. "PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility," Renewable Energy, Elsevier, vol. 150(C), pages 765-776.
    8. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    9. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    10. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirsad Madeško & Vahid Helać & Ajdin Fejzić & Samim Konjicija & Abdulah Akšamović & Selma Grebović, 2024. "Integrating Floating Photovoltaics with Hydroelectricity," Energies, MDPI, vol. 17(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    5. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    6. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    7. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    8. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    9. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    10. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    11. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    12. Koami Soulemane Hayibo & Pierce Mayville & Ravneet Kaur Kailey & Joshua M. Pearce, 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics," Energies, MDPI, vol. 13(23), pages 1-24, November.
    13. Fereshtehpour, Mohammad & Javidi Sabbaghian, Reza & Farrokhi, Ali & Jovein, Ehsan Bahrami & Ebrahimi Sarindizaj, Elham, 2021. "Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures," Renewable Energy, Elsevier, vol. 171(C), pages 1171-1187.
    14. Boduch, Andrzej & Mik, Krzysztof & Castro, Rui & Zawadzki, Paweł, 2022. "Technical and economic assessment of a 1 MWp floating photovoltaic system in Polish conditions," Renewable Energy, Elsevier, vol. 196(C), pages 983-994.
    15. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    17. Fernando Roberto dos Santos & Giovana Katie Wiecheteck & Jorim Sousa das Virgens Filho & Gabriel Alfredo Carranza & Terrence Lynn Chambers & Afef Fekih, 2022. "Effects of a Floating Photovoltaic System on the Water Evaporation Rate in the Passaúna Reservoir, Brazil," Energies, MDPI, vol. 15(17), pages 1-16, August.
    18. Jung-Youl Choi & Seong-Tae Hwang & Sun-Hee Kim, 2020. "Evaluation of a 3.5-MW Floating Photovoltaic Power Generation System on a Thermal Power Plant Ash Pond," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    19. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    20. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3780-:d:1135550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.