IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3626-d1070533.html
   My bibliography  Save this article

The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region

Author

Listed:
  • Peiqi Hu

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

  • Kai Zhou

    (Policy Research Center for Environmental and Economic, Ministry of Ecology and Environment of the People’s Republic of China, Beijing 100029, China)

  • Haoxi Zhang

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Zhong Ma

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

  • Jingyuan Li

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

Abstract

Based on the Spatial Durbin Model (SDM), this study evaluates the spatial spillover effect of PM 2.5 concentration in Beijing–Tianjin–Hebei (BTH) and its surrounding areas from 2000 to 2016, analyzes its main influencing factors and verifies the Environmental Kuznets Curve (EKC). In addition, Social Network Analysis (SNA) is used to measure the regional air pollution transmission network. The results are as follows: (1) A significant inverted U-shaped EKC with spatial spillover effect between the sampled 48 cities was verified. (2) Industrial structure had both local and spillover effects on air pollution with a U-shaped curve; technological progress exerted a negative spillover effect on air pollution, while traffic evidenced positive local and spillover effects; meteorological conditions showed different impacts on air pollution. (3) Heze, Tianjin, Xingtai, Shijiazhuang and Liaocheng are the top five cities in the centrality of the air pollution correlation network, indicating air pollution in these cities have significant impacts on other cities within the network; while Sanmenxia, Weihai, Yuncheng, Langfang and Zhumadian are the bottom five cities, which indicates that the air pollution of these cities has the least correlation with other cities. The policy suggestions for 48 cities involve: building up a regional joint prevention and control mechanism, enhancing the supervision of cities located in the centrality of the air pollution correlation network, accelerating high-tech and service-oriented industrialization, encouraging technological innovation in energy conservation and environmental protection and implementing vehicle regulation.

Suggested Citation

  • Peiqi Hu & Kai Zhou & Haoxi Zhang & Zhong Ma & Jingyuan Li, 2023. "The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3626-:d:1070533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.
    2. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    3. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Wang, Yuan & Han, Rong & Kubota, Jumpei, 2016. "Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1182-1188.
    6. Fujii, Hidemichi & Iwata, Kazuyuki & Chapman, Andrew & Kagawa, Shigemi & Managi, Shunsuke, 2018. "An analysis of urban environmental Kuznets curve of CO2 emissions: Empirical analysis of 276 global metropolitan areas," Applied Energy, Elsevier, vol. 228(C), pages 1561-1568.
    7. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    8. Orubu, Christopher O. & Omotor, Douglason G., 2011. "Environmental quality and economic growth: Searching for environmental Kuznets curves for air and water pollutants in Africa," Energy Policy, Elsevier, vol. 39(7), pages 4178-4188, July.
    9. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    10. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Charles Lincoln Kenji Yamamura & Silvério Catureba da Silva Filho & Elias Basile Tambourgi & Linda Lee Ho & Fernando Tobal Berssaneti, 2020. "Effects of Air Pollution on Human Health and Costs: Current Situation in São Paulo, Brazil," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    11. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    12. Apergis, Nicholas & Christou, Christina & Gupta, Rangan, 2017. "Are there Environmental Kuznets Curves for US state-level CO2 emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 551-558.
    13. Pablo-Romero, María del P. & De Jesús, Josué, 2016. "Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1343-1350.
    14. Meicun Li & Chunmei Mao, 2020. "Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 17(15), pages 1-12, August.
    15. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    16. Li Yang & Chunyan Qin & Ke Li & Chuxiong Deng & Yaojun Liu, 2023. "Quantifying the Spatiotemporal Heterogeneity of PM 2.5 Pollution and Its Determinants in 273 Cities in China," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    17. Huiping Wang & Qi Ge, 2022. "Analysis of the Spatial Association Network of PM 2.5 and Its Influencing Factors in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    18. Jahanger, Atif & Yu, Yang & Hossain, Mohammad Razib & Murshed, Muntasir & Balsalobre-Lorente, Daniel & Khan, Uzma, 2022. "Going away or going green in NAFTA nations? Linking natural resources, energy utilization, and environmental sustainability through the lens of the EKC hypothesis," Resources Policy, Elsevier, vol. 79(C).
    19. Qianqian Wu & Rong Wang, 2023. "Do Environmental Regulation and Foreign Direct Investment Drive Regional Air Pollution in China?," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    20. Huang, Jianhuan & Chen, Xudong & Huang, Bihong & Yang, Xiaoguang, 2017. "Economic and environmental impacts of foreign direct investment in China: A spatial spillover analysis," China Economic Review, Elsevier, vol. 45(C), pages 289-309.
    21. Maddison, David, 2006. "Environmental Kuznets curves: A spatial econometric approach," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 218-230, March.
    22. Kennedy, Peter & Hutchinson, Emma, 2014. "The relationship between emissions and income growth for a transboundary pollutant," Resource and Energy Economics, Elsevier, vol. 38(C), pages 221-242.
    23. Apergis, Nicholas, 2016. "Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 263-271.
    24. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.
    25. Park, Soonae & Lee, Youngmi, 2011. "Regional model of EKC for air pollution: Evidence from the Republic of Korea," Energy Policy, Elsevier, vol. 39(10), pages 5840-5849, October.
    26. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Luane Souza & Charles Lincoln Kenji Yamamura & Diego de Freitas Coelho & Elias Basile Tambourgi & Fernando Tobal Berssaneti & Linda Lee Ho, 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    27. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Hille & Bernhard Lambernd & Aviral K. Tiwari, 2021. "Any Signs of Green Growth? A Spatial Panel Analysis of Regional Air Pollution in South Korea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 719-760, December.
    2. Letisha S. Fong & Alberto Salvo & David Taylor, 2020. "Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1441-1456, September.
    3. Maralgua Och, 2017. "Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 117-128.
    4. Daniel Armeanu & Georgeta Vintilă & Jean Vasile Andrei & Ştefan Cristian Gherghina & Mihaela Cristina Drăgoi & Cristian Teodor, 2018. "Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    5. Jihuan Zhang, 2021. "Environmental Kuznets Curve Hypothesis on CO 2 Emissions: Evidence for China," JRFM, MDPI, vol. 14(3), pages 1-16, February.
    6. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    7. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    8. Alexandra Soberon & Irene D’Hers, 2020. "The Environmental Kuznets Curve: A Semiparametric Approach with Cross-Sectional Dependence," JRFM, MDPI, vol. 13(11), pages 1-23, November.
    9. Lv, Zhike & Gao, Zhenya, 2021. "The effect of corruption on environmental performance: Does spatial dependence play a role?," Economic Systems, Elsevier, vol. 45(2).
    10. Lin Cui & Alistair Hunt & Bruce Morley, 2021. "The Effectiveness of Environmental Spending in China and the Environmental Kuznets Curve," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    11. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    12. Rasli, Amran Md. & Qureshi, Muhammad Imran & Isah-Chikaji, Aliyu & Zaman, Khalid & Ahmad, Mehboob, 2018. "New toxics, race to the bottom and revised environmental Kuznets curve: The case of local and global pollutants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3120-3130.
    13. Abdullah Tirgil & Yasin Acar & Onder Ozgur, 2021. "Revisiting the environmental Kuznets curve: evidence from Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14585-14604, October.
    14. Jaeger, William K. & Kolpin, Van & Siegel, Ryan, 2023. "The environmental Kuznets curve reconsidered," Energy Economics, Elsevier, vol. 120(C).
    15. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    16. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    17. Zhonghua Cheng & Qingfei Xu & Ian Fraser Sanderson, 2021. "China's economic growth and haze pollution control," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2653-2669, July.
    18. Muhammad Azam & Hina Khan & Zia Ur Rehman, 2024. "Analyzing the Threshold Effect in the Relationship Between Income and Environmental Degradation in the Middle East and North Africa Region," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 6057-6078, June.
    19. Cherodian, Rowan & Fraser, Iain, 2024. "An environmental Kuznets curve for global forests: An application of the mi-lasso estimator," Forest Policy and Economics, Elsevier, vol. 168(C).
    20. Roxana Pincheira & Felipe Zuniga & Pablo Neudorfer, 2021. "Carbon Kuznets curve: a dynamic empirical approach for a panel data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5523-5541, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3626-:d:1070533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.