IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3751-d1134524.html
   My bibliography  Save this article

Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources

Author

Listed:
  • Paweł Pijarski

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Piotr Kacejko

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

Abstract

The increasing number of renewable energy sources (RESs) connected to power grids contributes to the emergence of not only balancing problems but also technical ones, such as the overloading of power lines. If renewable sources with a high generation level are planned to be connected in the area under consideration, then a large number of significant overloads should be expected, especially during contingency analysis. As a rule, high-voltage networks have a mesh topology, which is why the concept of using advanced mathematical algorithms was developed, with the help of which the resulting threats can be eliminated. This article presents a proposal for a new method of eliminating line overloads and determining the currently available nodal generation levels. Its innovation is a new method of eliminating problems related to the capacity of power grids. The high efficiency of the method results from the appropriately defined response of properly selected RES sources to the state of network congestion. The problem under consideration is illustrated with the example of a modified IEEE 118-bus test network. In order to eliminate line overloads, the article proposes a two-stage approach. In the first step, the sources that are most responsible for the occurring overloads are determined. In the second step, a metaheuristic algorithm is used to solve a nonlinear optimisation problem with constraints. This task involves reducing the power generated in the sources selected in the previous step in such a way that the resulting line overloads are eliminated, and, at the same time, the total value of the curtailed generation is minimal.

Suggested Citation

  • Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3751-:d:1134524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Kai Wang & Lixia Kang & Songhao Yang, 2022. "A Coordination Optimization Method for Load Shedding Considering Distribution Network Reconfiguration," Energies, MDPI, vol. 15(21), pages 1-18, November.
    3. Nur Zawani Saharuddin & Izham Zainal Abidin & Hazlie Mokhlis & Abdul Rahim Abdullah & Kanendra Naidu, 2018. "A Power System Network Splitting Strategy Based on Contingency Analysis," Energies, MDPI, vol. 11(2), pages 1-18, February.
    4. Padmini Sankaramurthy & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew Leonowicz & Yusuff Adedayo, 2019. "Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization," Energies, MDPI, vol. 12(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Candra Saigustia & Piotr Kacejko & Adrian Belowski & Piotr Miller, 2024. "Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines," Energies, MDPI, vol. 17(12), pages 1-22, June.
    2. Krystian Janusz Cieślak, 2024. "Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland," Energies, MDPI, vol. 17(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Karol Sidor & Piotr Miller & Robert Małkowski & Michał Izdebski, 2024. "Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources," Energies, MDPI, vol. 17(19), pages 1-21, October.
    3. Paweł Pijarski & Candra Saigustia & Piotr Kacejko & Adrian Belowski & Piotr Miller, 2024. "Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines," Energies, MDPI, vol. 17(12), pages 1-22, June.
    4. Florin-Constantin Baiceanu & Ovidiu Ivanov & Razvan-Constantin Beniuga & Bogdan-Constantin Neagu & Ciprian-Mircea Nemes, 2023. "A Continuous Multistage Load Shedding Algorithm for Industrial Processes Based on Metaheuristic Optimization," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    5. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    6. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    7. Lei Zhang & Jian Zhang & Xiaodong Yu & Jiawen Lv & Xiaoying Zhang, 2019. "Transient Simulation for a Pumped Storage Power Plant Considering Pressure Pulsation Based on Field Test," Energies, MDPI, vol. 12(13), pages 1-16, June.
    8. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    9. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    10. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3751-:d:1134524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.