IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4933-d1490981.html
   My bibliography  Save this article

Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources

Author

Listed:
  • Karol Sidor

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Piotr Miller

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Robert Małkowski

    (Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Michał Izdebski

    (Gdansk Division, Institute of Power Engineering—National Research Institute, 01-330 Warszawa, Poland)

Abstract

The article addresses challenges in optimizing the operation of medium voltage networks, emphasizing optimizing network division points and selecting the best network configuration for minimizing power and energy losses. It critically reviews recent research on the issue of network configuration optimization. The optimization of the medium voltage power grid reconfiguration process was carried out using known optimization tools. The novelty lies in the inclusion of a probabilistic approach in the decision-making process in forecasting loads and generation from renewable energy sources (RES). Optimization studies utilizing heuristic optimization methods were completed, and an algorithm was developed for forecasting load and power generated from RES based on historical data and current weather data obtained from weather API. The solution proposed in the article allows multiple applications, including optimizing network division points’ locations (which decreases financial costs of modernizing network infrastructure) as well as improving the reconfiguration process, resulting in lower power losses while maintaining voltage requirements.

Suggested Citation

  • Karol Sidor & Piotr Miller & Robert Małkowski & Michał Izdebski, 2024. "Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources," Energies, MDPI, vol. 17(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4933-:d:1490981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yesen & Li, Zhengmao & Mandapaka, Pradeep V. & Lo, Edmond Y.M., 2023. "Risk-averse restoration of coupled power and water systems with small pumped-hydro storage and stochastic rooftop renewables," Applied Energy, Elsevier, vol. 339(C).
    2. Paweł Pijarski & Piotr Kacejko, 2021. "Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    2. Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
    3. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    4. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    6. Jianzu Hu & Yuefeng Wang & Fan Cheng & Hanqing Shi, 2024. "A Long-Term Power Supply Risk Evaluation Method for China Regional Power System Based on Probabilistic Production Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.
    7. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    8. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).
    9. Paweł Pijarski & Candra Saigustia & Piotr Kacejko & Adrian Belowski & Piotr Miller, 2024. "Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Lehtonen, Matti & Darwish, Mohamed M.F. & Mahmoud, Karar, 2024. "Risk-averse bi-level planning model for maximizing renewable energy hosting capacity via empowering seasonal hydrogen storage," Applied Energy, Elsevier, vol. 361(C).
    11. Huang, Yu & Jin, Mingyue & Xie, Jiale & Peng, Yanjian & Zhong, Junjie, 2024. "Dynamic Bayesian game optimization method for multi-energy hub systems with incomplete load information," Energy, Elsevier, vol. 301(C).
    12. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    13. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    14. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    15. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    16. Bartłomiej Mroczek & Paweł Pijarski, 2021. "DSO Strategies Proposal for the LV Grid of the Future," Energies, MDPI, vol. 14(19), pages 1-19, October.
    17. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    18. Carlos Merino & Rui Castro, 2024. "Optimization of a Hybrid Solar–Wind Microgrid for Sustainable Development: A Case Study in Antofagasta, Chile," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    19. Sharma, Santosh & Li, Qifeng, 2024. "Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm," Applied Energy, Elsevier, vol. 359(C).
    20. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4933-:d:1490981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.