IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2965-d1416099.html
   My bibliography  Save this article

Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines

Author

Listed:
  • Paweł Pijarski

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Candra Saigustia

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Piotr Kacejko

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Adrian Belowski

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

  • Piotr Miller

    (Department of Power Engineering, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka St. 38D, 20-618 Lublin, Poland)

Abstract

The increasing number of renewable energy sources in power systems contributes to overloads of power lines in emergency situations. Lines made with relatively small cross-section cables, which in the past were designed for an operating temperature of 40 °C, are particularly exposed to overloads. Currently, they constitute the so-called “bottlenecks” in network capacity. This is manifested in the fact that when carrying out expert opinions aimed at examining the impact of a source on the network, computational analyses show overloads of its elements. This article proposes a methodology for eliminating these overloads. It involves the use of two methods at the same time, namely optimal network reconfiguration combined with minimisation of the total power curtailment in RE sources. The search for the optimal network configuration will also allow for minimising power curtailment in renewable energy sources, and thus reduce the costs of this type of operation. With such a tool, network operators will be able to achieve the effect of relieving the line load with the lowest possible cost of redistribution. Based on the IEEE 118 bus test network, calculations were performed that confirmed the effectiveness of the proposed approach. The operation of the proposed methodology is presented with the example of two selected network failure states. The novelty of the proposed solution lies in the simultaneous use of two methods of eliminating line overloads. This streamlines the entire process and improves its effectiveness.

Suggested Citation

  • Paweł Pijarski & Candra Saigustia & Piotr Kacejko & Adrian Belowski & Piotr Miller, 2024. "Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines," Energies, MDPI, vol. 17(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2965-:d:1416099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Pijarski & Piotr Kacejko, 2021. "Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
    3. Padmini Sankaramurthy & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew Leonowicz & Yusuff Adedayo, 2019. "Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization," Energies, MDPI, vol. 12(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    3. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    6. Paweł Pijarski & Piotr Kacejko & Marek Wancerz, 2022. "Voltage Control in MV Network with Distributed Generation—Possibilities of Real Quality Enhancement," Energies, MDPI, vol. 15(6), pages 1-22, March.
    7. Krystian Janusz Cieślak, 2024. "Profitability Analysis of a Prosumer Photovoltaic Installation in Light of Changing Electricity Billing Regulations in Poland," Energies, MDPI, vol. 17(15), pages 1-16, July.
    8. Karol Sidor & Piotr Miller & Robert Małkowski & Michał Izdebski, 2024. "Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources," Energies, MDPI, vol. 17(19), pages 1-21, October.
    9. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    10. Lei Zhang & Jian Zhang & Xiaodong Yu & Jiawen Lv & Xiaoying Zhang, 2019. "Transient Simulation for a Pumped Storage Power Plant Considering Pressure Pulsation Based on Field Test," Energies, MDPI, vol. 12(13), pages 1-16, June.
    11. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    12. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    13. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    14. Bartłomiej Mroczek & Paweł Pijarski, 2021. "DSO Strategies Proposal for the LV Grid of the Future," Energies, MDPI, vol. 14(19), pages 1-19, October.
    15. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2965-:d:1416099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.