IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1477-d224117.html
   My bibliography  Save this article

Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization

Author

Listed:
  • Padmini Sankaramurthy

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India)

  • Bharatiraja Chokkalingam

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India
    Department of Electrical Engineering, University of South Africa, Florida Park, Roodepoort 1709, South Africa)

  • Sanjeevikumar Padmanaban

    (Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Zbigniew Leonowicz

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50370 Wroclaw, Poland)

  • Yusuff Adedayo

    (Department of Electrical Engineering, University of South Africa, Florida Park, Roodepoort 1709, South Africa)

Abstract

In this paper, a Flower Pollination Algorithm (FPA) has been proposed for relieving congestion in the deregulated power electricity industry. Congestion in the power market is one the contemplative challenges to be overcome in the era of deregulation. The primary cause of congestion is due to the loss of the transmission line, an increase in load, or loss of generator(s). Hence, managing congestion is one of the issues which have to be tackled in the present scenario. There are several techniques to relieve congestion. It is quite well-known that the thermal limits of transmission lines in a power system are fixed. One of the methods to abate congestion is to reschedule the real power of the generators. The purpose of the present work is to benefit the Independent System Operator (ISO) in reliving congestion. (1) In order to meet this objective effectively, a FPA algorithm has been proposed for relieving congestion and is simulated on a modified IEEE 30-bus system initially. (2) Congestion cost, compared with and without the application of FPA, is computed. (3) To validate its effectiveness, the obtained results are compared with recent power system optimization algorithms present in the literature. (4) Further, the work has been extended with the incorporation of a Pumped Hydro Storage Unit (PHSU). Here an economic analysis of congestion cost reduction employing FPA before and after the incorporation of PHSU is investigated applying FPA. In comparison with other evolutionary algorithms, the uniqueness of generating a new population is attained in FPA by the levy flight procedure. It is one of the latest evolved algorithms and is suited for different power system problem due to fewer clear-cut tuning parameters in contrast with other algorithms. (5) Furthermore, the effects of other network parameters, including system losses and voltage, has been computed. The result obtained is tested in terms of congestion mitigation with and without the incorporation of PHSU, in terms of novel objective improvement, and with and without applying recently evolving FPA for the above application. Thus the objective-wise and algorithmic-wise innovative concept has been presented. This proves effectiveness of the algorithm in terms of minimized cost convergence and other parameter including system losses and voltage before and after the incorporation of PHSU as compared with other recent trendsetting reported optimization techniques.

Suggested Citation

  • Padmini Sankaramurthy & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew Leonowicz & Yusuff Adedayo, 2019. "Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization," Energies, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1477-:d:224117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raja Singh, R. & Raj Chelliah, Thanga & Agarwal, Pramod, 2014. "Power electronics in hydro electric energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 944-959.
    2. Deb, Rajat, 2000. "Operating Hydroelectric Plants and Pumped Storage Units in a Competitive Environment," The Electricity Journal, Elsevier, vol. 13(3), pages 24-32, April.
    3. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    4. Crampes, Claude & Moreaux, Michel, 2010. "Pumped storage and cost saving," Energy Economics, Elsevier, vol. 32(2), pages 325-333, March.
    5. Bingtuan Gao & Tingting Ma & Yi Tang, 2015. "Power Transmission Scheduling for Generators in a Deregulated Environment Based on a Game-Theoretic Approach," Energies, MDPI, vol. 8(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
    3. Paweł Pijarski & Candra Saigustia & Piotr Kacejko & Adrian Belowski & Piotr Miller, 2024. "Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines," Energies, MDPI, vol. 17(12), pages 1-22, June.
    4. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    5. Lei Zhang & Jian Zhang & Xiaodong Yu & Jiawen Lv & Xiaoying Zhang, 2019. "Transient Simulation for a Pumped Storage Power Plant Considering Pressure Pulsation Based on Field Test," Energies, MDPI, vol. 12(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    2. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    3. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    4. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    5. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    6. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    7. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    8. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    9. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    11. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    12. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    13. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    14. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    15. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    16. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    17. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    18. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    19. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    20. Antonio Paola & David Angeli & Goran Strbac, 2018. "On Distributed Scheduling of Flexible Demand and Nash Equilibria in the Electricity Market," Dynamic Games and Applications, Springer, vol. 8(4), pages 761-798, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1477-:d:224117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.