IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1211-1222.html
   My bibliography  Save this article

Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation

Author

Listed:
  • Pratt, Lawrence
  • Govender, Devashen
  • Klein, Richard

Abstract

Electroluminescence (EL) images enable defect detection in solar photovoltaic (PV) modules that are otherwise invisible to the naked eye, much the same way an x-ray enables a doctor to detect cracks and fractures in bones. The prevalence of multiple defects, e.g. micro cracks, inactive regions, gridline defects, and material defects, in PV module can be quantified with an EL image. Modern, deep learning techniques for computer vision can be applied to extract the useful information contained in the images on entire batches of PV modules. Defect detection and quantification in EL images can improve the efficiency and the reliability of PV modules both at the factory by identifying potential process issues and at the PV plant by identifying and reducing the number of faulty modules installed. In this work, we train and test a semantic segmentation model based on the u-net architecture for EL image analysis of PV modules made from mono-crystalline and multi-crystalline silicon wafer-based solar cells. This work is focused on developing and testing a deep learning method for computer vision that is independent of the equipment used to generate the EL images, independent of the wafer-based module design, and independent of the image quality.

Suggested Citation

  • Pratt, Lawrence & Govender, Devashen & Klein, Richard, 2021. "Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation," Renewable Energy, Elsevier, vol. 178(C), pages 1211-1222.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1211-1222
    DOI: 10.1016/j.renene.2021.06.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    2. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    3. Dhimish, Mahmoud & Ahmad, Ameer & Tyrrell, Andy M., 2022. "Inequalities in photovoltaics modules reliability: From packaging to PV installation site," Renewable Energy, Elsevier, vol. 192(C), pages 805-814.
    4. Michael W. Hopwood & Lekha Patel & Thushara Gunda, 2022. "Classification of Photovoltaic Failures with Hidden Markov Modeling, an Unsupervised Statistical Approach," Energies, MDPI, vol. 15(14), pages 1-12, July.
    5. Wang, Youyang & Li, Liying & Sun, Yifan & Xu, Jinjia & Jia, Yun & Hong, Jianyu & Hu, Xiaobo & Weng, Guoen & Luo, Xianjia & Chen, Shaoqiang & Zhu, Ziqiang & Chu, Junhao & Akiyama, Hidefumi, 2021. "Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging," Energy, Elsevier, vol. 229(C).
    6. Wang, Haoxuan & Chen, Huaian & Wang, Ben & Jin, Yi & Li, Guiqiang & Kan, Yan, 2022. "High-efficiency low-power microdefect detection in photovoltaic cells via a field programmable gate array-accelerated dual-flow network," Applied Energy, Elsevier, vol. 318(C).
    7. Hassan, Sharmarke & Dhimish, Mahmoud, 2023. "Enhancing solar photovoltaic modules quality assurance through convolutional neural network-aided automated defect detection," Renewable Energy, Elsevier, vol. 219(P1).
    8. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.
    9. Zhenying Xu & Ziqian Wu & Wei Fan, 2021. "Improved SSD-assisted algorithm for surface defect detection of electromagnetic luminescence," Journal of Risk and Reliability, , vol. 235(5), pages 761-768, October.
    10. Aidong Chen & Xiang Li & Hongyuan Jing & Chen Hong & Minghai Li, 2023. "Anomaly Detection Algorithm for Photovoltaic Cells Based on Lightweight Multi-Channel Spatial Attention Mechanism," Energies, MDPI, vol. 16(4), pages 1-15, February.
    11. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    13. Ramadoss Janarthanan & R. Uma Maheshwari & Prashant Kumar Shukla & Piyush Kumar Shukla & Seyedali Mirjalili & Manoj Kumar, 2021. "Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems," Energies, MDPI, vol. 14(20), pages 1-19, October.
    14. Shijie Wang & Haiyong Chen & Kun Liu & Ying Zhou & Huichuan Feng, 2023. "Meta-FSDet: a meta-learning based detector for few-shot defects of photovoltaic modules," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3413-3427, December.
    15. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    16. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    17. Cheng Cheng & Ning Dai & Jie Huang & Yahong Zhuang & Tao Tang & Longlong Liu, 2022. "RETRACTED ARTICLE: Capacitance pin defect detection based on deep learning," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3477-3494, December.
    18. Shirzad, Hossein & Barati, Ali Akbar & Ehteshammajd, Shaghayegh & Goli, Imaneh & Siamian, Narges & Moghaddam, Saghi Movahhed & Pour, Mahdad & Tan, Rong & Janečková, Kristina & Sklenička, Petr & Azadi,, 2022. "Agricultural land tenure system in Iran: An overview," Land Use Policy, Elsevier, vol. 123(C).
    19. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1211-1222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.