IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4513-d1163543.html
   My bibliography  Save this article

Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography

Author

Listed:
  • Kyoik Choi

    (Department of Energy and Mineral Resources Engineering, Kangwon National University, Samcheok 25913, Republic of Korea)

  • Jangwon Suh

    (Department of Energy and Mineral Resources Engineering, Kangwon National University, Samcheok 25913, Republic of Korea)

Abstract

In contrast to commercial photovoltaic (PV) power plants, PV systems at universities are not actively monitored for PV module failures, which can result in a loss of power generation. In this study, we used thermal imaging with drones to detect rooftop PV module failures at a university campus before comparing reductions in power generation according to the percentage of module failures in each building. Toward this aim, we adjusted the four factors affecting the power generation of the four buildings to have the same values (capacities, degradations due to aging, and the tilts and orientation angles of the PV systems) and calibrated the actual monthly power generation accordingly. Consequently, we detected three types of faults, namely open short-circuits, hot spots, and potential-induced degradation. Furthermore, we found that the higher the percentage of defective modules, the lower the power generation. In particular, the annual power generation of the building with the highest percentage of defective modules (12%) was reduced by approximately 25,042 kWh (32%) compared to the building with the lowest percentage of defective modules (4%). The results of this study can contribute to improving awareness of the importance of detecting and maintaining defective PV modules on university campuses and provide a useful basis for securing the sustainability of green campuses.

Suggested Citation

  • Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4513-:d:1163543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cubukcu, M. & Akanalci, A., 2020. "Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey," Renewable Energy, Elsevier, vol. 147(P1), pages 1231-1238.
    2. Manh-Hai Pham & Vu Minh Phap & Nguyen Ngoc Trung & Tran Thanh Son & Duong Trung Kien & Vu Thi Anh Tho, 2022. "A Study on the Impact of Various Meteorological Data on the Design Performance of Rooftop Solar Power Projects in Vietnam: A Case Study of Electric Power University," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. David Morillón Gálvez & Iván García Kerdan & Germán Carmona-Paredes, 2022. "Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops," Energies, MDPI, vol. 15(10), pages 1-16, May.
    4. Yoon Jung Choi & Minjung Oh & Jihye Kang & Loren Lutzenhiser, 2017. "Plans and Living Practices for the Green Campus of Portland State University," Sustainability, MDPI, vol. 9(2), pages 1-16, February.
    5. Saheed Lekan Gbadamosi & Fejiro S. Ogunje & Samuel Tita Wara & Nnamdi I. Nwulu, 2022. "Techno-Economic Evaluation of a Hybrid Energy System for an Educational Institution: A Case Study," Energies, MDPI, vol. 15(15), pages 1-12, August.
    6. Heng Shue Teah & Qinyu Yang & Motoharu Onuki & Heng Yi Teah, 2019. "Incorporating External Effects into Project Sustainability Assessments: The Case of a Green Campus Initiative Based on a Solar PV System," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    7. Dong Ho Lee & Jong Hwa Park, 2019. "Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles," Energies, MDPI, vol. 12(15), pages 1-14, July.
    8. Jacek Starzyński & Paweł Zawadzki & Dariusz Harańczyk, 2022. "Machine Learning in Solar Plants Inspection Automation," Energies, MDPI, vol. 15(16), pages 1-21, August.
    9. Akshay Suhas Baitule & K Sudhakar, 2017. "Solar powered green campus: a simulation study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 400-410.
    10. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    11. Gabriele Roggi & Alessandro Niccolai & Francesco Grimaccia & Marco Lovera, 2020. "A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic Plants Monitoring Applications," Energies, MDPI, vol. 13(4), pages 1-15, February.
    12. Sunghun Jung & Yonghyeon Jo & Young-Joon Kim, 2019. "Aerial Surveillance with Low-Altitude Long-Endurance Tethered Multirotor UAVs Using Photovoltaic Power Management System," Energies, MDPI, vol. 12(7), pages 1-14, April.
    13. Lyu-Guang Hua & Qasir Ali Memon & Muhammad Fawad Shaikh & Shoaib Ahmed Shaikh & Rehan Ali Rahimoon & Syed Hadi Hussain Shah & Abdul Qadir, 2022. "Comparative Analysis of Power Output, Fill Factor, and Efficiency at Fixed and Variable Tilt Angles for Polycrystalline and Monocrystalline Photovoltaic Panels—The Case of Sukkur IBA University," Energies, MDPI, vol. 15(11), pages 1-16, May.
    14. Marialaura Di Somma & Amedeo Buonanno & Martina Caliano & Giorgio Graditi & Giorgio Piazza & Stefano Bracco & Federico Delfino, 2022. "Stochastic Operation Optimization of the Smart Savona Campus as an Integrated Local Energy Community Considering Energy Costs and Carbon Emissions," Energies, MDPI, vol. 15(22), pages 1-27, November.
    15. Xingyu Zhu & Yuexia Lv & Jinpeng Bi & Mingkun Jiang & Yancai Su & Tingting Du, 2023. "Techno-Economic Analysis of Rooftop Photovoltaic System under Different Scenarios in China University Campuses," Energies, MDPI, vol. 16(7), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Bemposta Rosende & Javier Sánchez-Soriano & Carlos Quiterio Gómez Muñoz & Javier Fernández Andrés, 2020. "Remote Management Architecture of UAV Fleets for Maintenance, Surveillance, and Security Tasks in Solar Power Plants," Energies, MDPI, vol. 13(21), pages 1-23, November.
    2. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    3. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    4. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    5. Hailong Huang & Andrey V. Savkin & Wei Ni, 2020. "Energy-Efficient 3D Navigation of a Solar-Powered UAV for Secure Communication in the Presence of Eavesdroppers and No-Fly Zones," Energies, MDPI, vol. 13(6), pages 1-12, March.
    6. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    7. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    8. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    9. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    10. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    11. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    12. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    13. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    14. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    15. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    16. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    18. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    19. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    20. Aline Kirsten Vidal de Oliveira & Mohammadreza Aghaei & Ricardo Rüther, 2022. "Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review," Energies, MDPI, vol. 15(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4513-:d:1163543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.