A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yan, Dong & Zhang, Chi & Liang, Linjiang & Li, Kai & Jia, Lichao & Pu, Jian & Jian, Li & Li, Xi & Zhang, Tao, 2016. "Degradation analysis and durability improvement for SOFC 1-cell stack," Applied Energy, Elsevier, vol. 175(C), pages 414-420.
- Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
- Cuneo, A. & Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Probabilistic analysis of a fuel cell degradation model for solid oxide fuel cell and gas turbine hybrid systems," Energy, Elsevier, vol. 141(C), pages 2277-2287.
- Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
- Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
- Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
- Lyu, Chao & Lai, Qingzhi & Ge, Tengfei & Yu, Honghai & Wang, Lixin & Ma, Na, 2017. "A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework," Energy, Elsevier, vol. 120(C), pages 975-984.
- Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
- Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Jingxuan Peng & Dongqi Zhao & Yuanwu Xu & Xiaolong Wu & Xi Li, 2023. "Comprehensive Analysis of Solid Oxide Fuel Cell Performance Degradation Mechanism, Prediction, and Optimization Studies," Energies, MDPI, vol. 16(2), pages 1-23, January.
- Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
- Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
- Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
- Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
- Qian, Cheng & Xu, Binghui & Xia, Quan & Ren, Yi & Sun, Bo & Wang, Zili, 2023. "SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model," Applied Energy, Elsevier, vol. 336(C).
- Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Tianxiang Wang & Hongliang Zhou & Chengwei Zhu, 2022. "A Short-Term and Long-Term Prognostic Method for PEM Fuel Cells Based on Gaussian Process Regression," Energies, MDPI, vol. 15(13), pages 1-17, July.
- Wang, Shuai & Ma, Hongyan & Zhang, Yingda & Li, Shengyan & He, Wei, 2023. "Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach," Energy, Elsevier, vol. 282(C).
- Zhuang Tian & Zheng Wei & Jinhui Wang & Yinxiang Wang & Yuwei Lei & Ping Hu & S. M. Muyeen & Daming Zhou, 2023. "Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria," Energies, MDPI, vol. 16(23), pages 1-21, November.
- Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
- Mingfei Li & Jingjing Wang & Zhengpeng Chen & Xiuyang Qian & Chuanqi Sun & Di Gan & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2024. "A Comprehensive Review of Thermal Management in Solid Oxide Fuel Cells: Focus on Burners, Heat Exchangers, and Strategies," Energies, MDPI, vol. 17(5), pages 1-30, February.
- Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
- Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- E. Skordilis & R. Moghaddass, 2017. "A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5579-5596, October.
- Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
- Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
- Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
More about this item
Keywords
SOFC; remaining useful life prediction; Kalman filtering; long short-term memory network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3628-:d:1130600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.