IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8837-d981544.html
   My bibliography  Save this article

Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity

Author

Listed:
  • Illia Diahovchenko

    (Electric Power Engineering Department, Sumy State University Sumy, 40007 Sumy, Ukraine)

  • Lubov Petrichenko

    (Institute of Power Engineering, Faculty of Electrical and Environmental Engineering, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

Future energy markets are foreseen to integrate multiple entities located mainly at the distribution level of the grid so that consumers can participate in energy trading while acting as individual prosumers or by forming energy communities. To ensure the smooth integration of prosumers and satisfy the effective operation of the power distribution systems (PDSs), it is important to fundamentally assess their performance for different grid development scenarios. This paper aims to estimate and compare the hosting capacity (HC) thresholds and profitability for two alternatives: (a) when the PDS experiences rapid growth of scattered individual prosumers with photovoltaic (PV) installations and (b) when prosumers intend to formulate a medium-scale energy community, which is a single source located in one node. Maximization of the profits of decision-makers and maximization of the capacity of the PV generation were set as the two objectives for the optimization tasks. It has been analyzed how the physical topology of the distribution network can be harmonized with the underlying bidirectional power flows for each alternative while satisfying system constraints. A typical distribution test feeder is employed to estimate the energy loss and voltage variations in the PDS, as well as the profitability for energy producers, for various penetration levels of prosumers, in comparison to the base case with no PV generation. The results indicate that improvements in terms of profitability and reduction of energy losses can be achieved in both alternatives, as long as the penetration of PV systems does not reach a certain threshold, which can be chosen by decision-makers and is limited by the HC. Comparing the results of the simulation, EComs demonstrate higher HC vs. individual prosumers, both in terms of technical and economic priorities.

Suggested Citation

  • Illia Diahovchenko & Lubov Petrichenko, 2022. "Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity," Energies, MDPI, vol. 15(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8837-:d:981544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thuan Thanh Nguyen & Bach Hoang Dinh & Thai Dinh Pham & Thang Trung Nguyen, 2020. "Active Power Loss Reduction for Radial Distribution Systems by Placing Capacitors and PV Systems with Geography Location Constraints," Sustainability, MDPI, vol. 12(18), pages 1-30, September.
    2. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    3. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    4. Stefano Moroni & Valentina Antoniucci & Adriano Bisello, 2019. "Local Energy Communities and Distributed Generation: Contrasting Perspectives, and Inevitable Policy Trade-Offs, beyond the Apparent Global Consensus," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    5. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    6. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    7. Eva González-Romera & Mercedes Ruiz-Cortés & María-Isabel Milanés-Montero & Fermín Barrero-González & Enrique Romero-Cadaval & Rui Amaral Lopes & João Martins, 2019. "Advantages of Minimizing Energy Exchange Instead of Energy Cost in Prosumer Microgrids," Energies, MDPI, vol. 12(4), pages 1-18, February.
    8. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    9. Rabiee, Abbas & Mohseni-Bonab, Seyed Masoud, 2017. "Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach," Energy, Elsevier, vol. 120(C), pages 417-430.
    10. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    11. Daniel Lugo-Laguna & Angel Arcos-Vargas & Fernando Nuñez-Hernandez, 2021. "A European Assessment of the Solar Energy Cost: Key Factors and Optimal Technology," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    12. Antans Sauhats & Laila Zemite & Lubov Petrichenko & Igor Moshkin & Aivo Jasevics, 2018. "Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices," Energies, MDPI, vol. 11(11), pages 1-19, November.
    13. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    14. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    15. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karmaker, Ashish Kumar & Prakash, Krishneel & Siddique, Md Nazrul Islam & Hossain, Md Alamgir & Pota, Hemanshu, 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    4. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    5. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    6. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    7. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    8. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    10. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    11. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    12. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2020. "Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    13. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    14. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    15. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    16. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    17. Zare, Amir & Mehdinejad, Mehdi & Abedi, Mehrdad, 2024. "Designing a decentralized peer-to-peer energy market for an active distribution network considering loss and transaction fee allocation, and fairness," Applied Energy, Elsevier, vol. 358(C).
    18. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    19. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    20. Ahmed M. Mahmoud & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Mohamed Ezzat, 2022. "Towards Maximizing Hosting Capacity by Optimal Planning of Active and Reactive Power Compensators and Voltage Regulators: Case Study," Sustainability, MDPI, vol. 14(20), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8837-:d:981544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.