IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p225-d304636.html
   My bibliography  Save this article

Tailored Algorithms for Anomaly Detection in Photovoltaic Systems

Author

Listed:
  • Pedro Branco

    (CSide, Rua Alexandre Herculano 17, C/V Esq., 1250-008 Lisboa, Portugal)

  • Francisco Gonçalves

    (CSide, Rua Alexandre Herculano 17, C/V Esq., 1250-008 Lisboa, Portugal)

  • Ana Cristina Costa

    (Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal)

Abstract

The fastest-growing renewable source of energy is solar photovoltaic (PV) energy, which is likely to become the largest electricity source in the world by 2050. In order to be a viable alternative energy source, PV systems should maximise their efficiency and operate flawlessly. However, in practice, many PV systems do not operate at their full capacity due to several types of anomalies. We propose tailored algorithms for the detection of different PV system anomalies, including suboptimal orientation, daytime and sunrise/sunset shading, brief and sustained daytime zero-production, and low maximum production. Furthermore, we establish simple metrics to assess the severity of suboptimal orientation and daytime shading. The proposed detection algorithms were applied to a set of time-series of electricity production in Portugal, which are based on two periods with distinct weather conditions. Under favourable weather conditions, the algorithms successfully detected most of the time-series labelled with either daytime or sunrise/sunset shading, and with either sustained or brief daytime zero-production. There was a relatively low percentage of false positives, such that most of the anomaly detections were correct. As expected, the algorithms tend to be more robust under favourable rather than under adverse weather conditions. The proposed algorithms may prove to be useful not only to research specialists, but also to energy utilities and owners of small- and medium-sized PV systems, who may thereby effortlessly monitor their operation and performance.

Suggested Citation

  • Pedro Branco & Francisco Gonçalves & Ana Cristina Costa, 2020. "Tailored Algorithms for Anomaly Detection in Photovoltaic Systems," Energies, MDPI, vol. 13(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:225-:d:304636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    2. Silvano Vergura, 2018. "Hypothesis Tests-Based Analysis for Anomaly Detection in Photovoltaic Systems in the Absence of Environmental Parameters," Energies, MDPI, vol. 11(3), pages 1-18, February.
    3. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. Van Sark, 2018. "PV System Performance Evaluation by Clustering Production Data to Normal and Non-Normal Operation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    5. Eugene C.X. Ikejemba & Peter C. Schuur, 2018. "Analyzing the Impact of Theft and Vandalism in Relation to the Sustainability of Renewable Energy Development Projects in Sub-Saharan Africa," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    6. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selma Tchoketch Kebir & Nawal Cheggaga & Adrian Ilinca & Sabri Boulouma, 2021. "An Efficient Neural Network-Based Method for Diagnosing Faults of PV Array," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    2. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    3. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    4. Yuping Zou & Rui Wu & Xuesong Tian & Hua Li, 2023. "Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection," Energies, MDPI, vol. 16(7), pages 1-15, March.
    5. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    2. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    3. Silvano Vergura, 2020. "Bollinger Bands Based on Exponential Moving Average for Statistical Monitoring of Multi-Array Photovoltaic Systems," Energies, MDPI, vol. 13(15), pages 1-14, August.
    4. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    5. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    6. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    7. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    8. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    9. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    10. van der Ploeg, Frederick & Rezai, Armon, 2017. "Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 216-222.
    11. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    12. Colo, Philippe, 2021. "Cassandra's Curse: A Second Tragedy of the Commons," MPRA Paper 110878, University Library of Munich, Germany.
    13. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    14. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    16. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    17. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    18. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    19. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    20. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:225-:d:304636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.